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In classical mechanics, identical particles (such as electrons) do not lose their "individuality", despite the
identity of their physical properties. In quantum mechanics, the situation is entirely different. Because of the
Heisenberg's principle of uncertainty, the concept of the path of an electron ceases to have any meaning. Thus,
there is in principle no possibility of separately following each of a number of similar particles and thereby
distinguishing them. In quantum mechanics, identical particles entirely lose their individuality. The principle of
the in-distinguishability of similar particles plays a fundamental part in the quantum theory of system composed
of identical particles. Here we start to consider a system of only two particles. Because of the identity of the
particles, the states of the system obtained from each other by interchanging the two particles must be completely
equivalent physically.

1 System of particles 1 and 2
), &)
o) =lR) &), we) = [k [,

Even though the two particles are indistinguishable, mathematically |;//a> and |¢/h> are distinct kets for
|k |k") . In fact we have (p,

1//b> = 0. Suppose we make a measurement on the two particle system.
|k'> : state of one particle and |k"> : state of the other particle.

We do not know a priori whether the state ket is |Wa> = |k'>l|k”> , or |Wb> :|k”>l|k'> , or -for that matter- any

linear combination of the two: ¢, |y, > + cb| Wb> .

2 Exchange degeneracy
A specification of the eigenvalue of a complete set of observables does not completely determine the state
ket.

Mathematics of permutation symmetry:

A

Pll l//a> =1312|k'>1|k">2 :|k">1|k'>2 :|l//b>'
Clearly
1321 =i?27 and 1‘?22 =1.

Under 1?2, particle 1 having |k'> becomes particle 1 having |k">; particle 2 having |k"> becomes particle 1
having |k'> . In other words, it has the effect of interchanging 1 and 2.

((Note))
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Matrix element of AZI = 1?2 in terms of

Vo) =|k),|K"), and |y,) =|k"),|K),

A

Ralw.) = Balk) |k, =[k") [ ), =[ws),

1512|l//b> = 1312|k">1|k'>2 :|k'>1|k”>z =

Wa)-

Matrix element of }321 = 1?2

or
V. > | Wb>
w.| o 1
<'//b | 1 0
Eigensystem[ 2, |

A =1 (symmetric):

B,

V) = |V )

1 1 ~ =
l//sym'n> = ﬁ (| k'>1| k">2 + | k">1| k'>2) = ﬁ I+ F{Z)| k'>1| k">2

where the symmetrizer is defined by

PO A
S= f(l +5;)
A = -1 (anti-symmetric)

B,

Wanti> =7 Wanti>

1 1~
V= (R, =), = - Bk ),

where the antisymmetrizer is defined by

S
A=—(1-P
2 12)
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Our consideration can be extended to a system made up of many identical particles. A transposition is a
permutation which simply exchange the role of two of the particles, without touching others.

PR K)o ) K)o =) [, )[R R

The transposition operators 1311 are Hermitian (1’3”.+ = }A?/)

P =1

So that 1311 is an unitary operator. The allowed eigenvalues of 1311 are 1. It is important to note, however, that in

general

A

[£.5,]%0.
(1) The first example
Now we consider a permutation operator I?B for
Poal ), [ 7)) =€), [ 7)), = [l ), e,

for the system of 3 identical particles (| k'>1| k">2| k"’>3)

1 2 3
RZS=231

This means replacement of 1 52,2 — 3,3 —> 1.

})leﬁtlsz13Jpp
272 3 1) \2 1 32 3 1) "8

Quantum mechanically this is not correct. The correct one is
B, = K;h,

(i1) The second example

})L12?1121F3%JPP
272 3 1) U 3 2)\2 3 1) "B

or quantum mechanically
Ry =FR,Py

(iit)  The third example
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b 1123J L123JL321J bp
2731 2) 32 1)3 1 2) "B

or quantum mechanically
Ry, = B,h;
((Proof))

B, P

KD, 1e7) = Balken) [ 7)), =[ 7)), ),
and

Rl ) [R) [ k), = ), [7) [ ), =), ) [ ),
Therefore we have ffn = 13121313.

Any permutation operators can be broken into a product of transposition operators.

A oA A,
21)13_1)231)121)23 e

vk

By, =PBP,=F,B; =

The decomposition is not unique. However, for a given permutation, it can be shown that the parity of the
number of transposition into which it can be broken down is always the same: it is called the parity of the
permutation.

}3132 = A231312 = 1313 A23 = ]3121313 = A23}A)12 A232 even permutation
i?z; = Alz A23 = A13 Alz even permutation
1323 odd permutation
1?2 odd permutation
1’331 odd permutation
((Note))
é32 = 13321 = 13213
3 Symmetrizer and antisymmetrizer

Now we consider the two Hermitian operators

~ 1 ~ _
S = N A P, : symmetrizer
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N!
where ¢, =1 if P, is an even permutation and &, = -1 if P, is an odd permutation
S"=Sand A" =4

((Theorem-1))
If P, is an arbitrary permutation operator, we have

P,S=SP,=S
P A= AP, =¢, A (1)
((Proof))
This is due to the fact that
Bop =P,
such that
&5 =&, &,

or

~ o~ ] A A 1 A oA

P, S=F§P P, =W§Pﬁ:5
Pyd=—— Y e,Bob, ==Y 58,8, = 5,
NG S e

From Eq.(1) we see the following theorem

((Theorem-2))

§?=§

A =4
and

AS=84=0

Identical particles 5 11/10/2019



((Proot))

since half the ¢, are equal to 1 and half the &, equal to -1. S and A are therefore projectors. Their action on any

ket |l//> of the state space yields a completely symmetric or completely antisymmetric ket.

By =§

v)

A

ﬁa01a|l//> = anA l/j>

lws)=Slw)
va)=A4y)
((Example))
For N=3,

s 1A oA A A A .
S:_[1+P12+P23+P31+P123+P132]

6
and
~ 1 ~ =« ~ ~ ~ ~
A :g[l_Plz _P23 _le +P123 +P132]
where
P123 = P12 23 P132 = P12P13
Aon 1A oA R n
S+A:§(1+P123 +B,,)#1
4 Symmetrization postulate

The system containing N identical particles are either totally symmetrical under the interchange of any pair
(boson), or totally antisymmetrical under the interchange of any pair (fermion).
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A

F, '/’N,B> =‘!//N,B> )

A

Pij

!//N,F> = _‘V/N,F> )

where ‘!//N,B> is the eigenket of N identical boson systems and ‘!//N, F> is the eigenket of N identical fermion

systems.

((Note)) It is an empirical fact that a mixed symmetry does not occur.

Even more remarkable is that there is a connection between the spin of a particle and the statistics obeyed by it:
Half-integer spin particles are fermion, while integer-spin particles are bosons.

5 Pauli exclusion principle

Wolfgang Ernst Pauli (April 25, 1900 — December 15, 1958) was an Austrian theoretical physicist and one
of the pioneers of quantum physics. In 1945, after being nominated by Albert Einstein, he received the Nobel
Prize in Physics for his "decisive contribution through his discovery of a new law of Nature, the exclusion
principle or Pauli principle," involving spin theory, underpinning the structure of matter and the whole of
chemistry.

http://en.wikipedia.org/wiki/Wolfgang Pauli

Electron is a fermion. No two electrons can occupy the same state. We discuss the framatic difference
between fermions and bosons. Let us consider two particles. Each of which can occupy only two states |k'> and

k.

For a system of two fermions, we have no choice

&) [K),
&), &,

1

1 ANPAT N 1=
$[|k>1|k >2_|k>2|k >1]_\/5

For bosons, there are three states.
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) ),
i),
SRR K.

In contrast, for “classical particles” satisfying Maxwell-Boltzmann (M-B) statitics with no restriction on
symmetry, we have altogether four independent states.

|k'>1| k”>2 > k">1| k'>2 >

We see that in the fermion case, it is impossible for both particles to occupy the same state.

k),[k), and k%) [£"),

6 Transformation of observables by permutation
For simplicity, we consider a specific case where the two particle state ket is completely specified by the
eigenvalues of a single observable 4 for each of the particle.

A

Ala)|a), =ala)[a),
and
Aa)|a), =a'la)|a),
Since
R by Byl d)|a), = Rk, a') |a),
or
Rod By Byl d) |a), = Bydla) |a),
=a'P,|a') |a"),
=dla’)|a), = dla)|a), = 4 |a) |a),
we obtain

Similarly, we have
leAszlil =4

1*

It follows that 1?2 must change the particle label of observables.

Identical particles 8 11/10/2019



A

There are also observables, such as 1211 +B,, /Lzéz, which involve both indices simultaneously.

Ry(4,+B)R," =4 +B,

>

e L S AR e e S L
Pleleez =P12A1 . B,B,F, =AZBI

These results can be generalized to all observables which can be expressed in terms of observables which can be
expressed in terms of observables of the type of 4, and B, , to be denoted by O(1,2).

B,O12)E,™ = 02,
where 6(2,1) is the observable obtained from 6(1,2) by exchanging indices 1 and 2 throughout.
Q(l,2) is said to be symmetric if
0,1,2)= 0,(2.1)
or
[0,(1,2).5,] =0
Symbolic observables commute with the permutation operator.

In general. the observables Q(l,2,3,...,N) which are completely symmetric under exchange of indices 1, 2, ..., N
commute with all the transposition operators, and with all the permutation operators

7 Example
Let us now consider a Hamiltonian of a system of two identical particles.

ext

~ 1 . 1 . A A A A
H= b by + V(5 =B+ Vo (R)+ Vo (8)

pair(

or

1%2 is a constant of the motion. Since 1?22 =1, the eigenvalue of 1?2 allowed are +1.

A

Hly) = Ely)

Buly)=2ly)
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Bl =2bly)=2lw)=|w)
or
A==l

It therefore follows that if the two-particle state ket is symmteric (antisymmettric) to start with, it remains so at
all times.

(1) N =2 case
We can define the symmetrizer and antisymmetrtizer as follows.

1

S==(1+8,) 2=50—é»

A

Lo s ba a0 1o Ja o 1a o0 &
§* =2 A+ By S (4 By = (+2B, + D= (+ By) =S

YR SO |

A A 1 o N 2 1 7 D P
A =E(1—P12)E(1_Plz)zz(l_2plz +1):E(1_P12):A

Then we have
) =7 )[R, +1 ),)
and
v.) = (k)R 1R ),
where
S0, [, = 0 B, R, =2 (KK, +[7, [ ),

A 1 A 1
A| k'>1|k">2 :E(I_P12)|k'>1|k”>z :Eq k'>1|k">2 _|k">1|k'>z)

(i1) N =3 Cases

S= (1+32+F§3+F§1+323+R32)

o N
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~ 1 R R R R R

A=g(1_P12_Pz3_le+F;23+B32)

§+2=—;(1+13123+13132)¢1

A e 1, e

AR, [R), =2 1#), [k, (&),
|K), &) &),

Slater determinant

zgl|k'>1| k”> 2| k"'> , 1s zero if two of individual states coincide. We obtain Pauli’s exclusion principle.
8 Generalized method (Tomonaga)
We now consider a system consisting of many spins.
3':3'1 +8,+8,+...+8,
3‘-3':(3‘1 +S‘2 +3'3 +...+§N)-(3'1 +S‘2 +3'3 +...+S‘N)

or

g P 1
§7=>8+2>(S,-S,) =TZ&,,2 +5h22(&” .6,)
n=1 n=1 !

n<n'

or

S 3N: 1l .
W4 22,(6”'

Here we define an operator

R 2 R
0= N(N -1) 2 Ew

n<n'

O is Hermitian and [P, O] =0. We assume that

(i +6,:6,) (Dirac exchange interaction)

0=—2 Sliis . 6)-— 2 (1TNEDi 1ss 5,
NV -1 &2 NN-D2 2 2%

or
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O=1fi+—2 %5 4,
2 N(N_l)n<n'

Using the relation,

Oﬂzl[i+#(32
2 N(N-1) &

32_3_N)]21[N_4i+ 4 iz
27 2(N-1) N(N-1)h

S
[S2,0]= 0. When the eigenvalue of S is given by #2S(S +1), the eigenvalue of O is equal to

1, N-4 45(S+1)
x==l +
2°(N-1) N(N-1)

]

The eigenvalue of 0, (), specifies the symmetry.
(1) For N=2,

Dip x Dip =Dy + Dy

;(z%[—2+2S(S+1)] =—1+S(S+1)

When S =1, x =1 (symmetric).
When S =0, ¥ = -1 (anti-symmetric).
(i)  ForN=3,

DipxDipxDip=D3;p +2Dypp

K=ol + 2SS +1)]

2°2 3
When § = 3/2, x =1 (symmetric).
When § = 1/2, y=0.

(i) For N=4,

D12 x Dz x Dy x Dip =Dy + 3Dy + 2D
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- 56+D

6
For §=2, x =1 (symmetric).
For §=1, x=1/3.
For §=0, x=0.
0. Summary: fermion and boson

The Hamiltonian H of the system (in the absence of a magnetic field) does not contain the spin operators, and
hence, when it is applied to the wave function, it has no effect on the spin variables. The wave function of the
system of particles can be written in the form of product,

W) = W e )| Hop)

where ‘l//spm> depends only on the coordinate of the particles and ‘ ;(Spm> only on their spins. |1//> = ‘y/‘gpace> ;(Spm>
should be anti-symmetric since electrons are fermions.

The system containing N identical particles are either totally symmetrical under the interchange of any pair
(boson), or totally antisymmetrical under the interchange of any pair (fermion).

A
ii

P

J

l/’N,B> :‘I//N,B>’

P

J

A
ii

l//N,F> :_‘I//N,F>’

where ‘l//N, B> is the eigenket of N identical boson systems and ‘l//N, F> is the eigenket of N identical fermion

Systms.
((Note)) It is an empirical fact that a mixed symmetry does not occur.
Even more remarkable is that there is a connection between the spin of a particle and the statistics obeyed by it:

Half-integer spin particles are fermion, obeying the Fermi-Dirac statistic, while integer-spin particles are
bosons, obeying the Bose-Einstein statistics.

10.  Ground state for systems with many electrons
We construct the form of wavefunctions for the system with two, three, four, and five electrons (identical

particles, fermion) using the Slater determinant. We assume that each electron has spin states

We also assume the orbital state: |a> :|n :l> |b> :|n :2>,

c> =|n = 3>.., where 7 is the principal quantum

number. It is reasonable to consider that the ground state can be expressed by electrons occupied by

a)a), [@)lA)
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taking into account of the Pauli’s exclusion principle. For the system with three electrons, the ground state can
be expressed by

|a)ler). [a)l5). b))

For the system with the four electrons, the ground state can be expressed by

@), alp). ble). [2)B)

For the system with the five electrons, the ground state can be expressed by

@), alp) ). [B)B). fe)la)

(a) Two particles state
For the two states,

|ac) =|a) @), and |ap) =|a)| B)
we have the Slater determinant

= %alaz (.3, — pay)

aQ, al/gl

a,a, a,p,

V)=

where index 1, 2 denotes the particle 1 and particle 2. Clearly, the state vector is antisymmetric under the
exchange of two particles.

(b) Three particles state
For the three states,

jaa) =|a)a),

af)=|a) p), and |ba) =|b)|a)
we have the Slater determinant

aa, af ba

|l//>:%azaz op, ba,
a0, afy b,

1
= %[az% (o, By — Byo)bay +aa;(Ba; — o fy)b,a, + aa,(a, B, — Bia,)ba, ]

This state vector is antisymmetric under the exchange between any two particles (such that 1 — 2).

Identical particles 14 11/10/2019



(c) Four particle state
For the four states,

jaa) =|a)a),

ap) =|a) B).

ba)=|b)|a), and [bf) = |b) B)
we have the Slater determinant

aa, apf, ba bp,

|W> _ 1 jaa, aop, ba, bp,

V24 aa;  afy ba, b,

a0, ap, ba, ba,
=bb,(a,p, - ) aa, (. fy — fsty)
+b,by(a, By — pras)aya, (o By — Biaty)
+b.b, (. b, — Braaa (e B, — Ba,)
—bby(a,f; - ps)aya(a, B, — praty)
+bb (B, — Ba,)a,as(a, fy — Brty)
+bb,(af, - ) aa, (o, — fiat,)

This state vector is antisymmetric under the exchange between any two particles (such that 1—2), but
symmetric under the two types exchange (such that 1 > 2 and 3 — 4)

(d) Five particle state
For the five states

jaa) =|a)a),

ba)=[b)a), ca)=[c)|a)

ap)=|a)B). bp) =(6) B)

we have the Slater determinant

aq, ap ba b o
@ne, af, ba, bp, oo
|l//> =——aa;, aff ba, bf o,
ao, ap, ba, bp, ca,

aas  asfs bas bfs csa

1
= —m [alaz (alﬁz _ﬁlaz)b3b4(a3,b’4 _;84“3)6'5&5 + ]

((Mathematica))
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14

lal alfpl
Clear["Global *"]; Al = (a al alp )

a2a2 a2f2
Det[Al] // FullSimplify

ala2 (—a2B1l+alf2)

alal alfl blal
Bl=| a2a2 a2pB2 b2a2
a3a3 a3f33 b3a3

Det[Bl] // FullSimplify

.
14

al (a3b2-a2b3) a2a3 31 +
a2 (a3 bl+albl3) ala3fpB2+a3 (a2bl-alb2) al a2 33

alal alpBl blal blpAl

1 - a2a2 a2pB2 b2a2 b2p2 |
~ | a3a3 a383 b3a3 b33 |’

adoad a4B4 bdad bap4
Det[Cl] // FullSimplify

b2 (a3 a4bl (a2l -alB2) (a4 B33 -a3[34) +
al (a4 b3 (a3 B2-02B3) (a4 Bl -alf34) -
al3bd (a3 B1 -alB3) (a4 B2 -a234)))
a2 (a4 blb3 (a3 1 -al 33) (ad (2 -a2 [34) +
bd (a3 bl (a3B2-a2B3) (a4 1 -oalF4) +
alb3 (a2 Bl -alB2) (x4 33 -a334)))

+
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APPENDIX: |r)
((Townsend textbook))
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1. Formula-1

For a symmetric spatial state under the exchange of two particles, we have

|1//S =jdr'jdr"
—jdrjdr
—jdrjdr"

S
' u><v "

l"l"

)

)

)

and for an anti-symmetric spatial state under the exchange of two particles, we have

A
M u><v "

)

|l//A =jdr'jdr"

—jdrjdr

)

~ [ar [arte el
where
rrt) =[r) ),
§=%(i+ P, 21:%(1— P )
((Proof))
lws) =J'dr'jdr" L S)rr )
- Jar J'dr"S|' e
= [ar[dr s+ B|r ) rly,)
:_jdrjdr )
L arar () sl )
= [ ) + [ )
= e[l ) )
— arar e e )
where
$*lw) =Slys) = Slw) =)

‘§WS> :|WS>7
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< ' "|Plz|'//A>

<r" r

D

() = (o Bulrs) = ()
Bolws) =|ws)
Similarly,
) = [dr [ drdle e A s aly )
= [ar[drdlr ), >
:Ejdr'jdr"(l B NAIGNE 7
= [arfar )= ey
= [arfarde.ey ey )|y
= Jarfar e e ) <)
=—jdrjdr | ,,<. Py )+
= [ar [ drr )y ,)
where
Aly)=dy,)=Ady)=lv,)
() =~{r s ol ) =~{r )
Poly.)=—w.)
2. Formula-2: symmetric case
H5S) = (4 PJR) R, = Sk )

L)

1 A
x,x"8) = S+ By [x"), =S| x
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or

or

4.

(xS ) = (oS [ 5S)
— (x2S K7 S)
:<. i ks S)

R+ o))

e

KS) = g, x")

SR+ e )

Formula-3: antisymmetric case

s = = Rk ), =

K"

(o

ku > ' n|A+

(v
< '

)
k" )
k)
k)

,k";A>

(v.x
(e

X,X

Lgeeneen) (el

=R~ )

e

K" A) =y, (x,x")
1 |(]E) <x'|k">‘
V2 [k (xE")

Inner product for the symmetric and antisymmetric cases
We consider the inner product for the symmetric case
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where

We also consider the inner product for the antisymmetric case,

where

5.

(1)

= L) e

— IO + Sy )]

(o581305755) = (%
(e
(el
(o)
(el

S =8 (Hermitian operator)

525

Vo' S) =Sy

el

= %[5 (x'=y"o (x"=y") = 6 (x'=y") S (x"=y")]

(el d) = (el
- (el i)
(el
(el
(el

A =4 (Hermitian operator)

P

Closure relation

Symmetric case
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I drdr'r',r";S><r',r ; =1 (completeness)
((Proof))
jdr'jdr s L' S>< >
= jdr'j dr”E[&(s'—r')é(s"—r”) + 5(s'—r")5(s”—r')]<r >
1
—5[< )+ (57,558 o)
=(s'.s >
since
< ' ";S> — %[5(5,1_’,1)5(5,"_’,") + 5(5"—1"”)5(1"”—}"')]
< > < ' n > < ' n > <S' Su >
< n’ v; >:<Su S' > < ' n > > <S' Su >
or
(s'.5";S|ws) =(s", )
(i1) Antisymmetric case
I drdr'\r',r",; A>< =1 (completeness)
((Proof))
jdr'jdr s, ' A>< >
= [ar| dr"E[é‘(s'—r')é(s"—r”) = 5(s'—r")S(r"—r)r',r )
1
—5[< (57554l
=(s'.s >
since
< ' ";A> — %[5(5,1_’,1)5(5,"_’,") _ 5(5"—1"”)5(1"”—}"')]
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(s
(s",

)=(s',s"]4 )

)= (s

) =(s',s"|4
)=(s"s'lF

)= (s
)= s

)

12

or

(8.8 A4ly.)=~(s"s" Ay )

6. Wave function representation (symmetric case)
We have the relation for the symmetric case, such that

(v.258lws) = S Ly + ()

and

(o

Noting that

(23 Slrg) = (¢ ) = (",

B, WS> :|WS>

)= x1S%p) = (o Sl) = (¢ lys)

)=(xlys)

12

we get

(x5 Slys) = (xxlws) = (")

7 Wave function representation (anti-symmetric case)
We have the relation for the anti-symmetric case, such that

(e Al )= T ) = ()

and
(o xndly ) =] A p) = (x| ) = (')
Noting tht
(i dly ) =y ) = Boly ) = (2w )
1312 WA>:_|WA>
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we have

(Al = () = (vl
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