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1. Introduction 

The quantum-mechanical description based on an incomplete set of data concerning the system 

is effected by means of what is called a density operator. Such a density operator was introduced 

by von Neumann in 1927 to describe statistical concepts in quantum mechanics. Most physical 

systems consist of so many particles, or posses so many degrees of freedom. that it is impossible 

to specify completely the state of these systems. Nevertheless, physicists are forced to make 

predictions about the behavior of the systems they study from a knowledge of a very small number 

of parameters. To this end, one can use statistical methods and introduce representative ensembles 

which are collections of identical systems. 

The density operator is an alternate representation of the state of a quantum system for which 

we have previously used the wavefunction. Although describing a quantum system with the 

density matrix is equivalent to using the wavefunction, one gains significant practical advantages 

using the density matrix for many physics problem. For a quantum mechanical system there are, 

in general, two reasons for statistical treatment: lack of detailed knowledge and the probabilistic 

nature of quantum mechanics. The statistical treatment is carried out by means of the density 

matrix which takes the place of the ensemble density in classical statistical mechanics. This 

operator – as all physical quantities in quantum mechanics, the density matrix is an operator – can 

be used to evaluate averages. 

 

2. Definition of density operator 
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Fig. Ensemble average. Definition of the density operator. 

 

We suppose that the state ket vector of a system is represented by 
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with the matrix element 
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*ˆ
mnmnnm ccuu   , 

 

where the bar denotes ensemble average; that is, average over all the systems in the ensemble. 

Then the density operator ̂  has the following properties. 

 

(a)  ˆˆ 
.  (Hermitian operator) 

 

(b) 1]ˆ[ Tr . 

 

((Proof)) 
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(c) The ensemble average of the expectation of an observable Â  is given by 
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(d) 

 

We define a new basis as 

 

n nU u   

 

such that 
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ˆ
n n nw    

 

where Û  is the unitary operator. Note that 
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(e) Equation of motion 

The time dependence of ̂  is given by 

 

]ˆ,ˆ[ˆ H
dt

d
i  ℏ . 

 

This equation is analogous to the Liouville theorem in classical theory. 
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Note that this equation of motion is a little different (in sign) from the equation of motion of the 

Heisenberg operator HÂ . 

 

]ˆ,ˆ[
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___________________________________________________________________________ 

3. Pure state 

 

 ˆ , 

 

 ˆˆ 2  . 
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Then we have 

 

1]ˆ[]ˆ[ 2   TrTr . 

 

This is the definition of the density operator for the pure state. 

 

 ˆˆ  , 

 

 ˆ . 

 

Then   is the eigenket of ̂  with the eigenvalue 1. 

 

4. Mixed state 

We use the following notations. 

 

n n n na b u    

 

with 

 

ˆ
n nU u   

 

where  

 

ˆ
n n nw   , 

 

Here wn is the eigenvalue and n  is the eigenket of ̂  with the eigenvalue wn.  

 

We define the unitary operator as 
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or 

 

ˆ ˆˆ
n n nU U u w u  . 

 

Then we have 

 

1

2

3

0 0 0 0

0 0 0 0

ˆ ˆˆ 0 0 0 0

0 0 0 . 0

0 0 0 0 n

w

w

U U w





 
 
 
 
 
 
 
 

,  (diagonal matrix) 

 

or 

 

,
ˆ ˆˆ

i j i i ju U U u w     

 

under the basis of { nu }. So the density operator can be rewritten as 
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We note that 
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The expectation value is given by 

 

ˆ ˆ ˆ[ ]
n n n

n

A w A Tr A    ,

 



 

8 
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For the projection operator, we have 
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and 
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5. Example: density operator for the un-polarized light 

 

(a) The pure state 

We now consider the density operator of the linearly polarized photon, 

 

ˆ ' 'x x  ,  (the pure state) 

 

where ' cos sinx x y   . The corresponding density matrix under the basis of { x  and 

y } can be given by 
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satisfying the condition for the pure state.  
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where 

 

' cos sin cosx x x x x y     , 

 

' cos sin siny y y x y y     . 

 

(b) The mixed state 

What is the density operator for the un-polarized light? To obtain it, we take the average of 

each matrix element of the density operator in the pure state over  between 0 and 2;  
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which is the density matrix for the un-polarized light. 
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 , 

 

the density operator for the un-polarized light un̂  is for the mixed state. The transition from a 

pure state into a mixed state is connected with the loss of no-diagonal elements in the density 

matrix. The interference terms appear as non-diagonal elements in the density matrix. 

We note that 
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6. Example: the difference between the pure state and mixed state 

We consider the state given by 
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e
.

 

 

Does the density operator 

 

 ˆ ,

 
 

define a density matrix? 

 

((Solution)) 
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For any

 

 , we have 
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So ̂  is the density operator for the pure state.

 
 

((Mathematica) 
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7. Density matrix of a perfectly polarized spin (pure state) 

((Cohen-Tannoudji et al.)) 

 

We start with the case of spin S = 1/2 
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Clear@"Global`∗"D;
exp_ ∗ :=

exp ê. 8Complex@re_, im_D � Complex@re, −imD<;

ψ1 = J Cos@θD
Exp@� φD Sin@θD N;

ψ11 = Transpose@ψ1D@@1DD;
ρ = OuterATimes, ψ11, ψ11 ∗E êê Simplify

99Cos@θD2, �−� φ
Cos@θD Sin@θD=,

9�� φ
Cos@θD Sin@θD, Sin@θD2==

ρ êê MatrixForm

Cos@θD2 �−� φ Cos@θD Sin@θD
�� φ Cos@θD Sin@θD Sin@θD2

ρ.ρ êê Simplify

99Cos@θD2, �−� φ
Cos@θD Sin@θD=,

9�� φ
Cos@θD Sin@θD, Sin@θD2==

Tr@ρD êê Simplify

1

Tr@ρ.ρD êê Simplify

1
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 , 
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where 

 

 Ŝ  is the projection of  Ŝ  onto the x-y plane. 

 

The density operator (matrix) ),(ˆ  , corresponding to the state n . 
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The matrix is generally non-diagonal. 
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2
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e . 

 

The “populations”   and   have a very simple physical significance, 

 

yŜ
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1
2
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2
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 . 

 

The populations are therefore related to the longitudinal polarization.  

The “coherence”  ,  : 

 




   Ŝ
1
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2
cos

2
sin

ℏ
, 

 

where 

 

 sin
2

ˆ ℏ
S . 

 

The argument of  ,   is , that is, the angle between  Ŝ  and the x axis. Note that 

 

),(ˆ),(ˆ 2   nnnnnn , 

 

is a relation characteristic of a pure state. 

 

8. A statistical mixture; un-polarized spin 

The only information we possess about the spin is the following. It can point in any direction 

of space and all directions are equally probable. The situation corresponds to a statistical mixture 

of the state n  with equal weights. 

 



 

15 

 

1̂
2

1

2

1
0

0
2

1

),(ˆsin
4

1
),(ˆ

4

1
ˆ

0

2

0


















 








 ddd ,                

 

2

1

)2sin
2

1
(sin

4

1

)cos1(sin
2

1
2

4

1

2
cossin

4

1
),(ˆsin

4

1

0

0

0

2

2

00

11

2

0



































d

d

dddd

 

 

2

1

)2sin
2

1
(sin

4

1

)cos1(sin
2

1
2

4

1

2
sinsin

4

1
),(ˆsin

4

1

0

0

0

2

2

00

22

2

0



































d

d

dsddd

 

 

0

2
cos

2
sinsin

4

1
),(ˆsin

4

1

0

2

00

12

2

0



  














ddedd i

 

 

So we have 

 

 ˆ
2

1
ˆ 2  , 

 

So ̂   is the density operator for which a statistical mixture of states. Note that 
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1
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We again find that the spin is unpolarized: since all the directions are equivalent, the mean value 

of the spin is zero, 

 

0ˆˆˆ  zyx SSS . 

 

((Comment)) 

(i) The coherence”   and   are related to the transverse polarization Ŝ  of the spin. 

Upon summing the vector Ŝ  corresponding to all (equiprobable) directions of the x-y 

plane, we obviously find a null result. 

 

(ii) It is impossible to describe a statistical mixture by an average state vector. 

 

We assume that we are trying to choose  and  so that the vector is given 

 

zz   , 

 

with 

 

1
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represent an unpolarized spin, for which 
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Then we get 

 

0*  , 
2

122
  . 

 

Thus we cannot find  and  so that 0ˆˆˆ  zyx SSS . 

 

9. Mixed state: another example of a statistical mixture 

We could imagine other statistical mixture which would lead to the same density matrix. 

 

(i) A statistical mixture of equal proportions of z  and z  

 




























10

01

2

1

10

00

2

1

00

01

2

1

2

1

2

1
ˆ zzzz . 

 

(ii) A statistical mixture of equal proportions of n  and n  
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Since all the physical predictions depend only on the density matrix, it is impossible to distinguish 

physically between the various types of statistical mixtures which lead to the same density matrix. 

 

We note that 
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10. Mixed state: Spin 1/2 in the thermodynamic equilibrium in a static magnetic field 

The spin of the electron has a magnetic moment (spin magnetic moment) as 

 

Sμ ˆ2
ˆ

ℏ

B
s


 , 

 

where Ŝ  is the spin angular momentum. The spin Hamiltonian in the presence of a magnetic 

along the z axis is 

 

zzs SH 


 ˆ
2

ˆˆˆ 0
0

ℏ
 Bμ , 

 

where 

 

mc

eB
0 . (Larmor angular frequency) 

 

The eigenvalue problem: 

 

zzzH z 
2

ˆ
2

ˆ 00 


 ℏℏ
, 

 

zzzH z 
2

ˆ
2

ˆ 00 


 ℏℏ
. 

 

The system is in the thermodynamic equilibrium at T. We can assert that it has a probability 

 

)
2

exp(
1 0

TkZ B

ℏ
 , of being in the state z , and 

 

)
2

exp(
1 0

TkZ B

ℏ
,  of being in the state z , 

 

where kB is the Boltzmann constant and Z is the partition function is defined by 

 

)
2

exp()
2

exp( 00
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Z

BB

 ℏℏ
 . 

 

We have another example of a statistical mixtures, described by the density matrix 
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with 

 

 ˆˆ 2  . 

 

The non-diagonal elements are zero. We note that 

 

0]ˆˆ[ˆ  xx STrS  , 

 

0]ˆˆ[ˆ  yy STrS  , 
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2
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ℏℏℏℏℏ
 . 

 

Since 1)
2

tanh( 
TkB

ℏ
, this polarization is less than the value 

2

ℏ
 which corresponds to a spin 

which is perfectly polarized along the z axis. “Partially polarized along the z axis. 

______________________________________________________________________________  

11. Example: Cohen-Tannoudji 

Quantum Mechanics Chapter 4 exercise (4-4) 

A beam of atom of spin 1/2 passes through one apparatus, which serves as a "polarizer" 

in a direction which makes an angle  with Oz in the xOz plane, and then through another 

apparatus, the "analyzer," which measures the Sz component of the spin. We assume that 

between the polarizer and the analyzer, over a length L of the atomic beam, a magnetic 

field B0 is applied which is uniform and parallel to Ox. We call v the speed of the atoms 

and vLT /  the time during which they are submitted to the field B0. We set 00 B  . 

 

(a) What is the state vector 1  of a spin at the moment it enters the analyzer? 



 

20 

 

(b) Show that when the measurement is performed in the analyzer, there is a 

probability equal to )]cos(cos1[
2

1
0T  of finding 

2

ℏ
  and 

)]cos(cos1[
2

1
0T  of finding 

2

ℏ
 . Give a physical interpretation. 

(c) Show that the density matrix 1̂  of a particle which enters the analyzer is written, 

in the { z , z } basis: 
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)sin(cossin)cos(cos1
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 . 

 

Calculate ]ˆˆ[ 1 xSTr  , ]ˆˆ[ 1 ySTr  , and ]ˆˆ[ 1 zSTr  . Give an interpretation. Does the 

density operator 1̂  describes a pure state? 

 

d. Now assume that the speed of an atom is a random variable, and hence the time T 

is known only to within a certain uncertainty T. In addition, the field B0 is 

assumed to be sufficiently strong that 10 T . The possible values of the 

product T0  are then (modulus 2) all values included between 0 and 2, all of 

which are equally probable. 

In this case, what is the density operator 2̂  of an atom at the moment it enters 

the analyzer? Does 2̂  correspond to a pure case? Calculate the quantities 

]ˆˆ[ 2 xSTr  , ]ˆˆ[ 2 ySTr  , and ]ˆˆ[ 2 zSTr  . What is your interpretation? In which case 

does the density operator describe a completely polarized spin? A completely 

unpolarized spin? 

Describe quantitatively the phenomena observed at the analyzer exit when 0  

varies from zero to a value where the condition 10 T  is satisfied. 

 

((Solution)) 
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The Hamiltonian is given by 
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Time evolution operator: 
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Note that 
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where 
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zUx  ˆ , zUx  ˆ , 
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Then we have 

 

(b) Density matrix for the pure state 
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We define the density matrix for the pure state as 
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from the definition of  
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(d) The possible value of the product T0   are all values included between 0 and 2, 

all of which are equally probable. 
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Then we find that 
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Therefore 2̂  correspond to the mixed state case. 
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Tr

Tr

STrS zz

ℏ

ℏ
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12. Eigenvalue problem (formulation) 

Here we use  

 

n na  ,  n nb u  
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Suppose that the density operator can be described by 

 

ˆ
i i i

i

w   , 

 

under the basis of { i }. i  is the eigenket of ̂  with the eigenvalue wi. 

 

ˆ
i j j j i j j ij i i

j j

w w w           . 

 

Here we choose the basis { ib }, where 

 

ii bUa ˆ , ki bUa ˆ , 

 

where 

 

ˆ ˆ ˆ
i i i i i i

i i i

U U u u U u u u u     , 

 

ˆ
k l k l klu u U u U   . 

 

The matrix element under this basis is 

 

ˆ
k l i k i i l

i

u u w u u   . 

 

The eigenvalue problem: 

 

ˆ
i i iw   , 

 

ˆ
k l l i i k i

l

u u u w u   . 

 

Since 

 

l i liu U  , 
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ˆ
k l li i ki

l

u u U wU  ,  (eigenvalue problem) 

 

11 12 1 1 1

21 22 2 2 2

1 2

. . . . .

. . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . .

n i i

n i i

i

n n nn ni ni

U U

U U

w

U U

  
  

  

    
    
    
     
    

          
    

     
     
        
    

, 

 

ˆ ˆ ˆ ˆˆ ( )i i i i i i i i i

i i i

w wU u u U U w u u U         . 

 

13. The use of Mathematica for the calculation of the density operator 

We use the following Mathematica program for the calculation of density operator. 

(i) 

 

]ˆ[ATr . 

 

(ii) 

 

21  . 

 

(a) 

][.
*

21  Transpose  

 

when 

 
































na

a

a

2

1

1 ,  
































nb

b

b

2

1

2 . 
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(b) 

 

Outer[Times, 
*

21, ]  →  21   

 

when 1  and 2  are given by 

 

 naaa  211 ,   nbbb  212  

 

(iii) 

KroneckerProduct[
21 , ]   21    

 

(iii) Eigenvalue problems 

Eigensystem 

Orthogonalize 

Normalize 

 

Suppose that the matrix of ̂  is given in the form of n x n matrix. We solve the eigenvalue 

problem of the matrix of ̂  using the Program "Eigensystem". 

 

Eigensystem[ ̂ ] 

 

Suppose that there are n eigenvalues and the corresponding normalized kets. 

 

wi  i   (i = 1, 2, .., n). 

 

where 

 

ijji   . 

 

Then we have the diagonal form of the density operator as 

 

 
i

iii

i

ii

i

ii w  ˆˆˆ , 

 

using the closure relation (completeness). 

 

14. Example: eigenvalue problem 
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The density matrix (2 x 2 matrix) is not diagonal.  

 

][
2

1

11

11

2

1
ˆ zzzzzzzz 












 . 

 

Note that 

 

 ˆˆ2  , 

 

1]ˆ[]ˆ[ 2   TrTr , 

 

satisfying the condition for the pure state.  

 

Eigensystem[ ̂ ]; 

 

Eigenvalue  Eigenket 

 

w1 = 1 x











1

1

2

1
1 , 

 

w2 = 0    x









1

1

2

1
2 . 

 

Then we have 

 

xx

w

ww









111

222111

2211 )(ˆˆ







 

 

15. Density operator for the spin 1/2 system 

((L.I. Schiff)) 

In general the density operator for the spin 1/2 system can be described by 

 

































ai

iaa yyx

2

1

2

ˆˆˆ1̂
ˆ

2221

1211 , 
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where a, , , and  are real numbers. Since 1]ˆ[ Tr , we get 

 

1
2


  aa

, 

 

or 

 

1a . 

 

Then the density operator can be rewritten as 

 

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

ˆ ˆ

1 1ˆ ˆ ˆ ˆ1 ( )
2 2

1 ˆ ˆ[1 ( )]
2

x y y

 

  
     

        

  



     
     

    

n

σ n

 

 

with 

 

1n ,  (n: unit vector) 

 

and 

 

),,(
222222222 












n . 

 

Note that 

 



















21)(2

)(221

4

1
ˆ

222

222

2

i

i
. 

 

For the pure state, we have 

 

 ˆˆ2  , or 1]ˆ[]ˆ[ 2   TrTr , 

 

leading to the relation 
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1222   . 

 

Then the density operator for the pure state is 

 

)ˆ1̂(
2

1
ˆ nσn  . 

 

16. Comment on the density operator for the pure state 

The density operator for the pure state can be described by 

 
















2*

*2

ˆ



 pure , 

 

where 

 













 zz . 

 

with 

 

1
22
  . 

 

We note that 

 






























zyx

yxz

pure ninn

innn

1

1

2

1
)ˆ1̂(

2

1
ˆ

2*

*2

nσ



 , 

 

or 

 
**  xn , )( **   iny , 

 
22

2112  zn . 

 

The expectation values of spin components are given by 

 

xxxxx nTrTrTr  )]ˆ(ˆ[
2

1
)]ˆ1̂(ˆ[

2

1
)ˆˆ(ˆ nσnσn  , 
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yyyyy nTrTrTr  )]ˆ(ˆ[
2

1
)]ˆ1̂(ˆ[

2

1
)ˆˆ(ˆ nσnσn  , 

 

zzzzz nTrTrTr  )]ˆ(ˆ[
2

1
)]ˆ1̂(ˆ[

2

1
)ˆˆ(ˆ nσnσn  , 

 

where 

 

0]ˆˆ[]ˆˆ[  xyyx TrTr  , 0]ˆˆ[]ˆˆ[  yzzy TrTr  , 

 

0]ˆˆ[]ˆˆ[  zxxz TrTr  , 

 

2]ˆ[]ˆ[]ˆ[
222  zyx TrTrTr  . 

 

Then we have 

 

  xx n















 ****

01

10
ˆ 




 , 

 

  yy ni
i

i
















 
 )(

0

0
ˆ **** 




 , 

 

  zz n



















2222**
2112

10

01
ˆ 




 . 

 

_______________________________________________________________________ 

17. Density operator: the Bloch-sphere for mixed states 

 

We discuss the general case (both the pure state and mixed state). For convenience we use 

 

xr ,  yr ,  
zr . 

 

An arbitrary single qubit density operator can be written as 
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2

1

2

22

1

)ˆˆˆ1̂(
2

1
ˆ

zyx

yxz

zzyyxx
rirr

irrr

rrr  , 

 

where ),,( zyx rrrr  is an arbitrary real vector of length 1r . We see that 

 

1]ˆ[ Tr . 

 

We calculate 

 

)1(
2

1
]ˆ[ 2

rr Tr , 

 

When 1r , ̂  is the density operator of a mixed state. When 1r  (i.e., the points are on the 

surface of the Bloch sphere), ̂  is the density operator of a pure state; 

 

1]ˆ[ 2 Tr . 

 

______________________________________________________________________________ 

 

1]ˆ[ Tr , 

 

xxx rTr  ]ˆˆ[  ,  yyy rTr  ]ˆˆ[  ,  zzz rTr  ]ˆˆ[   

 

2

1
]ˆ)[( xr

xxTr


  , 
2

1
]ˆ)[( xr

xxTr


  , 

 

2

1
]ˆ)[(

yr
yyTr


  , 

2

1
]ˆ)[(

yr
yyTr


  , 

 

2

1
]ˆ)[( zr

zzTr


  , 
2

1
]ˆ)[( zr

zzTr


  , 

 

((Mathematica)) 

 



 

34 

 

 

Clear@"Global`∗"D;
expr_∗ :=

expr ê. Complex@a_, b_D � Complex@a, −bD;
σx = K 0 1

1 0
O; σy = K 0 −�

� 0
O; σz = K 1 0

0 −1
O;

E1 = K 1 0

0 1
O;

ρ =
E1 + rx σx + ry σy + rz σz

2
êê Simplify

::1 + rz

2
,
1

2
Hrx − � ryL>, : 1

2
Hrx + � ryL, 1 − rz

2
>>

ψxp =
1

2

81, 1<; ψxn =
1

2

81, −1<;

ψyp =
1

2

81, �<; ψyn =
1

2

81, −�<; ψzp = 81, 0<;

ψzn = 80, 1<; σx = K 0 1

1 0
O; σy = K 0 −�

� 0
O;

σz = K 1 0

0 −1
O;
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Axp = Outer@Times, ψxp, ψxp∗D êê Simplify;

Axn = Outer@Times, ψxn, ψxn∗D êê Simplify;

Ayp = Outer@Times, ψyp, ψyp∗D êê Simplify;

Ayn = Outer@Times, ψyn, ψyn∗D êê Simplify;

Azp = Outer@Times, ψzp, ψzp∗D êê Simplify;

Azn = Outer@Times, ψzn, ψzn∗D êê Simplify;

Tr@σx.ρD êê Simplify

rx

Tr@σy.ρD êê Simplify

ry

Tr@σz.ρD êê Simplify

rz

Tr@Axp.ρD êê Simplify

1 + rx

2

Tr@Axn.ρD êê Simplify

1 − rx

2
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18. Interpretation of the density matrix elements 

What is the probability to find the qubit in the state z  when it is described by a density 

matrix ? 

 


































2221

1211

2

1

2

22

1

)ˆˆˆ1̂(
2

1
ˆ





zyx

yxz

zzyyxx
rirr

irrr

rrr . 

 

The projection operator: 

 











00

01
ˆ zzP ,  










10

00
ˆ zzP . 

 

The probability to find the qubit in the state z  is 

 

11
2

1
]ˆˆ[  


 

xrPTrP . 

 

The probability to find the qubit in the state z  is 

 

Tr@Ayp.ρD êê Simplify

1 + ry

2

Tr@Ayn.ρD êê Simplify

1 − ry

2

Tr@Azp.ρD êê Simplify

1 + rz

2

Tr@Azn.ρD êê Simplify

1 − rz

2
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22
2

1
]ˆˆ[  


 

xrPTrP , 

 

with  

 

12211   PP . 

 

So the probability to find the qubit in a certain state is given by the diagonal elements. 

 

19. Bloch sphere picture 

The Bloch sphere is a geometrical representation of the pure state space of a two-level quantum 

mechanical system (qubit). The north and south poles of the Bloch sphere are typically chosen to 

correspond to the ketvectors and z  and z , respectively, which correspond. to the spin-up 

and spin-down states of an electron. The points on the surface of the sphere correspond to the pure 
states of the system, whereas the interior points correspond to the mixed states.  
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Bloch sphere, 1r  and the vector r pointing from the origin to a point on the sphere.  

 



















2
sin

2
cos

2
sin

2
cos 









i

i

e

zezr , 

 

),,( zyx rrrr ,  (called the Bloch vector). 

 

 cossinˆ]ˆˆ[  xxx Trr , 

 

 sinsinˆ]ˆˆ[  yyy Trr , 
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 cosˆ]ˆˆ[  zzz Trr . 

 

The density operator (pure state) is defined as 

 





















)
2

(sinsin
2

1

sin
2

1
)

2
(cos

ˆ
2

2












i

i

e

e
, 

 

where 

 

1]ˆ[ Tr , 

 





















)
2

(sinsin
2

1

sin
2

1
)

2
(cos

ˆˆ
2

2

2












i

i

e

e
. 

 

Pauli spin matrix representation of the density matrix is given by 

 

)ˆ1̂(
2

1
ˆ σr  . 

 

((Example-1)) Plot the density matrix state ][
2

1
ˆ zzzz   in the Bloch sphere. 

 

((Solution)) 
 











10

01

2

1
][

2

1
ˆ zzzz , 

 

0)ˆˆ( xTr  , 

 

0)ˆˆ( yTr  , 

 

0)ˆˆ( zTr  . 

 
The corresponding point of the Bloch sphere is the origin (0, 0, 0). 

 
((Example-2)) Plot the density obtained by averaging  
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2
sinsin

2

1

sin
2

1

2
cos

ˆ
2

2












i

i

e

e

, 

 

over  with a uniform probability distribution in the interval ]2,0[  . 

 
((Solution)) 

 





































2
sin0

0
2

cos

ˆ
2

2





 , 

 

0)ˆˆ( xTr  , 

 

0)ˆˆ( yTr  , 

 

 cos)ˆˆ( zTr . 

 

Then the corresponding point of the Bloch sphere is the origin (0, 0, cos). 
 

((Example-3))  The average nσ ˆ  

We evaluate the average nσ ˆ  using the density operator, 

 

)]ˆ)(ˆ1̂(
2

1
[)]ˆ(ˆ[ˆ nσσrnσnσ  TrTr  . 

 
Noting that 

 

)(ˆ1̂)()ˆ)(ˆ( nrσnrσnσr  i ,  (formula) 

 
we get 

 

)](ˆ1̂)(ˆ[
2

1
ˆ nrσnrnσnσ  iTr . 

 
Since 

 

0)ˆ(]ˆ[  nσnσ TrTr , 0)()ˆ()](ˆ[  nrσnrσ TrTr , 
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we have 
 

)(]1̂[)(
2

1
ˆ nrnrnσ  Tr . 

 

((Example-4)) Pure state )ˆˆ(
2

1
ˆ σr  I  

 

)]ˆ(2)1(1̂[
4

1

)](ˆ)ˆ(2)1(1̂[
4

1

)]ˆ)(ˆ(ˆˆ1̂[
4

1

)ˆ1̂(
2

1
)ˆ1̂(

2

1
ˆ 2

σrrr

rrσσrrr

σrσrσrσr

σrσr









i



 

 

)1(
2

1

)]ˆ(2)1(1̂[
4

1
]ˆ[

2

2

r

TrTr



 σrrr
 

 

When r = 1  1]ˆ[ 2 Tr ;  (pure stae). 

When r<1 1]ˆ[ 2 Tr :  (mixed state) 

 

20. Poincare sphere picture 

Adopting a basis set { R , L }, representing right- and left-circularly polarized photons, a 

photon of any polarization can be represented, within an overall phase by the superposition 
 

LeR i

2
sin

2
cos


  , 

 

where the angles  and  define the point on the surface of the unit sphere (the Poincaré sphere) 

whose south and north poles represent the states L  and R , in analogy with z  and z  in 

the Bloch sphere, respectively. 
 

)(
2

1
yixR  ,  )(

2

1
yixL  . 

 

The orthogonal horizontal and vertical linear polarizations are given by 
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)(
2

1
LRH  , and )(

2

1
LRV  , 

 
respectively. They appear at diametrically opposite points on the equator. An incoherent 

polarization state is represented by a point within the Poincare sphere. For a pure photon state, the 
density operator can be expressed by 

 

)1(
2

1
ˆ σs  , 

 
where sx, sy and sz are called Stokes parameters. 

 

]ˆ[ xx Trs  ,  ]ˆ[ yy Trs  ,  ]ˆ[ zz Trs  . 

 

______________________________________________________________________________ 

21. Example-I: eigenvalue problem 

We consider the density matrix given by 

 

zzzzzzzz 









4

1

4

1

4

1

4

3

4/14/1

4/14/3
̂ , 

 

under the basis of { z , z }. This matrix is not diagonal. We now try to find the new basis 

under which the new density of matrix is diagonal. In order to do that, we need to solve the 

eigenvalue problem using the Mathematica. 

 

The eigenvalue problem. 

 

11
ˆ  U ,  22

ˆ  U , 

 

4

22
1


  = 0.85355, 










382683.0

92388.0
1 , 

 

4

22
2


  = 0.146447, 










92388.0

382683.0
2 , 

 













92388.0382683.0

382683.092388.0
Û , 
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0.853553 0
ˆ ˆˆ ˆ

0 0.146447
i j i j

U U       
  

 
 

 

under the basis of { i }. We have 

 

1 1 2 2
ˆ 0.853553 0.146447      . 

 

____________________________________________________________________________ 

22. Example-II: eigenvalue problem 

We consider the density matrix given by 

 

zzzzzzzz 









2

1

2

1

2

1

2

1

2/12/1

2/12/1
̂ , 

 

under the basis of { z , z }. This matrix is not diagonal.  

 

 ˆˆ 2  .  (pure state) 

 

We now try to find the new basis under which the new density of matrix is diagonal. In order to 

do that, we need to solve the eigenvalue problem using the Mathematica. 

 

The eigenvalue problem. 

 

zU  ˆ
1 ,  zU  ˆ

2 , 

 

11  ,  









1

1

2

1
1 x , 

 

02   , 










1

1

2

1
2 x , 

 






















2

1

2

1
2

1

2

1

Û , 
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iii  ˆ , 

 

or 

 

xx  111112211 )(ˆˆ  , 

 

which is the density matrix for the pure state. 

 

23. Example-III: x  representation 

The probability of finding the system in the quantum state represented by the state vector   

(of norm unity) is  

 

]ˆ[)(  TrP  . 

 

Pure state in the x  representation. 

 

 ˆ . 

 

The probability of the system at the position x: 

 
2

ˆ'ˆ'')](ˆ[)(  xxxxxxxdxxxTrxP   . 

 

We consider a system which is in either a coherent, or incoherent (mixture) superposition of two 

momenta k  and k  

 

(a) Coherent superposition 

 

)(
2

1
kk  , 

 

kkkkkkkk

kkkk







[(
2

1

)])([(
2

1

ˆ 
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and 

 

][
2

1

]ˆ[)(

xkkxxkkxxkkxxkkx

xxTrxP



 
 

 

Using the transformation function, 

 

ikx
ekx

2
1

 , 

 

we have 

 

)]cos(1[
2

1
)2(

4

1
)( 22 kxeexP kxikxi  


. 

 

(b) Incoherent mixture 

 

)[(
2

1
ˆ kkkk   

 





2

1

][
2

1

]ˆ[)(







xkkxxkkx

xxTrxP

 

 

24. Kronecker product 

A classical bit of information is represented by a system that can be in either of two states, 0, 

1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the 

state of a two-level system, whose basic components may be written as 

 

0
0

1
1 








 ,  1

1

0
2 








 . 

 

This is the so-called quantum bit of information, or, in short, a qubit. Here we define the 

combined state of two qubits as 
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21   = KroneckerProduct[ 1 , 2 ] 

 

Then we have 

 





















0

0

0

1

00 , 





















0

0

1

0

10 , 





















0

1

0

0

01 , 

 





















1

0

0

0

11 . 

 





















0000

0000

0000

0001

00)(00 , 





















0000

0000

0010

0000

10)(10 , 

 





















0000

0100

0000

0000

01)(01 , 





















1000

0000

0000

0000

11)(11 . 

 

25. Calculation of density operator by Mathematica 

A classical bit of information is represented by a system that can be in either of two states, 0, 

1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the 

state of a two-level system, whose basic components may be written as 

 

 

0
0

1
1 








 ,  1

1

0
2 








 . 

 

This is the so-called quantum bit of information, or, in short, a qubit. 

The Kronecker product: 

 

21   = KroneckerProduct[ 1 , 2 ] 
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Then we have 

 





















0

0

0

1

00 , 

 





















0

0

1

0

10 , 

 





















0

1

0

0

01 , 

 





















1

0

0

0

11 , 

 





















0000

0000

0000

0001

00)(00 , 

 





















0000

0000

0010

0000

10)(10 , 
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0000

0100

0000

0000

01)(01 , 

 





















1000

0000

0000

0000

11)(11 . 

 

________________________________________________________________________ 

((Example-1)) 

 

21
1 zz  ,  

21
2 zz  , 

 

21
3 zz  ,  

21
4 zz  , 

 

where the index 1, 2 denote the particle number. 

 

(a) For the state defined by 

 






















0

1

1

0

2

1
)32(

2

1
a ,

 

 

the density operator (the pure state) is given by 

 
























0000

0110

0110

0000

2

1
ˆ

aaa  .

 

 

(b) For the state defined by 
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0

1

1

0

2

1
)32(

2

1
s ,

 

 

the density operator (the pure state) is given by 

 





















0000

0110

0110

0000

2

1
ˆ

sss  .

 

 

________________________________________________________________________ 

26. Example 

We consider the density operator (4x4 matrix) in the Hilbert space. 

 

)00)(00(ˆ)1(
4

1
ˆ

4   I , 

 

where  is a real parameter (0<<1). We examine the property of the density operator. 

 






































4

1
000

0
4

1
00

00
4

1
0

000
4

1

ˆ










 . 

 

Thus 

 

 ˆˆ 
, 

 

4

31
]ˆ[

2
2 




Tr , 1]ˆ[ Tr . 
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For 10   , we have 

 

1]ˆ[0 2  Tr , 

 

which means that the system is mixed. 

 

 

27. Problems and solutions (related to the density operator) 

A. Example-1 

A spin-1/2 particle is in the pure state zbza   

(a) Construct the density matrix in the Sz basis for this state. 

(b) Starting with your result in (a), determine the density matrix in the Sx basis where 

 

)(
2

1
zzx  , )(

2

1
zzx  . 

 

(c) Use your result for the density matrix in (b) to determine the probability that a measurement 

of Sx yields 2/ℏ  for the state  . 

 

((Solution)) 

 











b

a
 ,  under the basis of { z , z } 

 

We define the unitary operator as 

 

zUx  ˆ , zUx  ˆ , 

 

with 

 












11

11

2

1
Û , 












11

11

2

1
Û . 

 

(a) 

 

  


















**

**

**ˆ
bbba

abaa
ba

b

a
z  , 
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under the basis of { x , x } 

 

(b) 

 




































































 

))(())((

))(())((

2

1

)()(

)()(

11

11

2

1

11

11

2

1

11

11

2

1

ˆˆˆˆ

****

****

****

****

**

**

babababa

babababa

babbab

baabaa

bbba

abaa

UU zx 

 

 

The projection operator 

 

  


















00

01
01

0

1
ˆ xxPx   

 

under the basis of { x , x }. Then we have 

 








 
























00

))(())((

2

1

))(())((

))(())((

2

1

00

01
ˆˆ

****

****

****

babababa

babababa

babababa
P xx

 

 

and 

 

))((
2

1
]ˆˆ[ ** babaPTr xx   

 

((Mathematica)) 
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___________________________________________________________________________ 

B. Example-2 

Given the density operator 

 















11

11

2

1
][

2

1
ˆ zzzzzzzz , 

 

construct the density matrix. Use the density operator formalism to calculate xS  for this state. Is 

this the density operator for a pure state? Justify your answer in two different ways. 

 

((Solution)) 

 















11

11

2

1
̂ , 

 

1]ˆ[]ˆ[ 2   TrTr ,  (pure state) 

 

2
]ˆˆ[

ℏ
xSTr  . 

Clear@"Global`∗"D; σx = J 0 1

1 0
N; ψz = 8a, b<;

ψzc = 9a∗, b∗=; ρz = Outer@Times, ψz, ψzcD;
ρz êê MatrixForm

K a a∗ a b∗

b a∗ b b∗
O

U =
1

2

J 1 1

1 −1
N; UH = Transpose@UD;

ρx = UH.ρz.U êê Simplify; ρx êê MatrixForm

1

2
Ha + bL Ha∗ + b∗L 1

2
Ha + bL Ha∗ − b∗L

1

2
Ha − bL Ha∗ + b∗L 1

2
Ha − bL Ha∗ − b∗L

Px = Outer@Times, 81, 0<, 81, 0<D;
Tr@Px.ρxD
1

2
Ha + bL Ia∗ + b∗M
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((Mathematica)) 

 

 
 

_____________________________________________________________________________ 

C. Example-3 

Given the density operator 

 

zzzz 
4

1

4

3
̂ , 

 

construct the density matrix. Show that this is the density operator for a mixed state. Determine 

xS , yS , and zS  for this state. 

 

((Solution)) 

 











10

03

4

1
̂ . 

 

Clear@"Global`∗"D; Sx =
—

2
J 0 1

1 0
N;

ρ =

1

2
HOuter@Times, 81, 0<, 81, 0<D +

Outer@Times, 80, 1<, 80, 1<D −

Outer@Times, 80, 1<, 81, 0<D −

Outer@Times, 81, 0<, 80, 1<DL
:: 1

2
, −

1

2
>, :− 1

2
,
1

2
>>

Tr@Sx.ρD
−
—

2

ρ.ρ − ρ êê Simplify

880, 0<, 80, 0<<
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8

5
]ˆ[

2 Tr  <1,  (mixed state) 

 











01

10

2
ˆ ℏ

xS , 






 


0

0

2
ˆ

i

i
Sy

ℏ
, 












10

01

2
ˆ ℏ

zS , 

 

0]ˆˆ[  xx STrS ,  0]ˆˆ[  yy STrS , 

 

4
]ˆˆ[
ℏ

 zz STrS . 

 

((Mathematica)) 
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____________________________________________________________________ 

D. Example-4 

Show that 

 

][
2

1
][

2

1
ˆ zzzz  nnnn , 

 

where 

 

Clear@"Global`∗"D; Sx =
—

2
J 0 1

1 0
N; Sy =

—

2
J 0 −i

i 0
N;

Sz =
—

2
J 1 0

0 −1
N;

ρ =
3

4
Outer@Times, 81, 0<, 81, 0<D +

1

4
Outer@Times, 80, 1<, 80, 1<D

:: 3
4
, 0>, :0, 1

4
>>

Tr@ρ.ρD êê Simplify

5

8

Tr@Sx.ρD
0

Tr@Sy.ρD
0

Tr@Sz.ρD
—

4
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2
sin

2
cos





ie

n ,  




















2
cos

2
sin





ie

n . 

 

((Solution)) 

 











10

01

2

1
][

2

1
ˆ zzzzz , 

 











10

01

2

1
][

2

1
ˆ nnnnn . 

 

Then we have 

 

z ˆˆ 
n , 

 

2

1
]ˆ[ 2 Tr . (for mixed state) 

 

((Mathematica)) 

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ψpn = :CosBθ

2
F, Exp@� φD SinBθ

2
F>;

ψmn = :SinBθ

2
F, −Exp@� φD CosBθ

2
F>;

ρ =

1

2
OuterATimes, ψpn, ψpn∗E +

1

2
OuterATimes, ψmn, ψmn∗E êê Simplify

::1
2
, 0>, :0, 1

2
>>

Tr@ρ.ρD
1

2
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_____________________________________________________________________________ 

E. Example-5 

Find states 1  and 1  for which the density operator  

 

zzzz 
4

1

4

3
̂ , 

 

can be expressed in the form 

 

2211
2

1

2

1
ˆ   . 

 

((Solution)) 

 

Assume that 

 





















2

1
2

3

2

1

2

3
1 zz , 

 






















2

1
2

3

2

1

2

3
2 zz . 

 

Then we have 

 



















4

1
0

0
4

3

4

1

4

3

2

1

2

1
ˆ

2211 zzzz . 

 

with 

 

8

5
]ˆ[ 2 Tr . 
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((Mathematica)) 

 
 

_____________________________________________________________________ 

F. Example-6 

The density matrix for an ensemble of spin-1/2 particles in the Sz basis is 

 
















pn

n

*
4

1

̂ . 

 

(a) What value must p have? Why? 

(b) What value(s) must n have for the density matrix to represent a pure state? 

(c) What pure state is represented when n takes its maximum possible real value? Express your 

answer in terms of the state n  given by 

 



















2
sin

2
cos





ie

n . 

 

((Solution)) Here we assume that n is the complex number, 

(a) 

 

n = a + i b, 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;

ψ1 = : 3

2
,
1

2
>; ψ2 = : 3

2
, −

1

2
>;

ρ =

1

2
OuterATimes, ψ1, ψ1∗E +

1

2
OuterATimes, ψ2, ψ2∗E êê

Simplify

:: 3
4
, 0>, :0, 1

4
>>

Tr@ρ.ρD
5

8
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piba

iba
4

1

̂ , 

 

1
4

1
]ˆ[  pTr  ,  

4

3
p , 

 

(b) 

 

1)(2
8

5
]ˆ[ 222  baTr  .  for the pure state 

 

4

322  ban . 

 

(c) 

 



















2
sin

2
cos





ie

n , 

 





















2
sinsin

2

1

sin
2

1

2
cos

ˆ
2

2












e

e
nn . 

 

So we have 

 

 sin
2

1  eiba . 

 

When b = 0, 0 . n is a real number. 

 

4

3
sin

2

1
 a ,  
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2

3
sin   leading to the value of  as 

3


   or 

3

2
  . 

 

Here we note that 

 

4

1

2
cos2 


, or 

2

1
cos  . 

 

So we get  

 

3

2
  . 

 

((Mathematica)) 

 

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ρ =

1

4
a + � b

a − � b p

991
4
, a + � b=, 8a − � b, p<=

eq1 = Solve@Tr@ρD � 1, pD
99p →

3

4
==

ρ.ρ ê. eq1@@1DD êê Simplify

99 1

16
+ a2 + b2, a + � b=, 9a − � b,

9

16
+ a2 + b2==

eq2 = Tr@ρ.ρD ê. eq1@@1DD êê Simplify

5

8
+ 2 a2 + 2 b2
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____________________________________________________________________________ 

G. Example-7 

Show that the Curie constant for an ensemble of N spin-1 particles of mass m and charge q = -

e immersed in a uniform magnetic field B = Bk is given by 

 

Bk

N
C

3

2 2
 , 

 

where 
mc

ge

2

ℏ
 . Compare this value of C with that for an ensemble of spin-1/2 particles, 

 

((Solution)) 

The magnetic moment is defined as 

 

Sμ ˆˆ
ℏ

Bg
 . 

 

The magnetic moment is antiparallel to the spin angular momentum. The Hamiltonian Ĥ  is given 

by 

 

z
B

z S
Bg

BH ˆˆˆˆ 0
0

ℏ


  Bμ , 

 

eq21 = eq2 ê. 9a2 → x − b2= êê Simplify

5

8
+ 2 x

Solve@eq21 � 1, xD
99x →

3

16
==

ψpn = :CosBθ

2
F, Exp@� φD SinBθ

2
F>;

ρn = OuterATimes, ψpn, ψpn∗E êê Simplify

99CosAθ

2
E2, 1

2
�−� φ

Sin@θD=, 91
2

�� φ
Sin@θD, SinAθ

2
E2==
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mmEmmBgmm
Bg

mS
Bg

mH B
B

z
B ,1,1,1,1ˆ,1ˆ

00
00  


ℏ

ℏℏ
. 

 

The energy eigenstate  energy eigenvalue 

 

1,1 m ,   E0  (the magnetic moment is antiparallel to B). 

0,1 m ,   0 

1,1 m ,   -E0  (the magnetic moment is parallel to B) 

 

((Solution)) 

 

 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ψp1 = 81, 0, 0<; ψ0 = 80, 1, 0<; ψm1 = 80, 0, 1<;

Sz = —

1 0 0

0 0 0

0 0 −1

;

rule1 = 8Z1 → Exp@β E1D + 1 + Exp@−β E1D, E1 → g µB B0<;
ρ =

1

Z1
HExp@−β E1D Outer@Times, ψp1 , ψp1 D +

Outer@Times, ψ0 , ψ0 D +

Exp@β E1D Outer@Times, ψm1 , ψm1 DL êê
FullSimplify

99 �−E1 β

Z1
, 0, 0=, 90, 1

Z1
, 0=, 90, 0,

�E1 β

Z1
==

M = −
g µB

—
N1 Tr@Sz ρD êê Simplify

�−E1 β I−1 + �2 E1 βM g N1 µB

Z1
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____________________________________________________________________________ 

H. Exmple-8 

An attempt to perform a Bell-state measurement on two photons produces a mixed state, one 

in which the two photons are in the entangled state 

 

],,[
2

1
yyxx  , 

 

with probability p and with probability 2/)1( p  in each of the states xx,  and yy, . Determine 

the density matrix for this ensemble using the linear polarization states of the photons as basis 

states. 

 

((Solution)) 

 

M1 = M êê. rule1 êê Simplify

I−1 + �2 B0 g β µBM g N1 µB

1 + �B0 g β µB + �2 B0 g β µB

M2 = M1 ê. :B0 →
x

g µB β
>

I−1 + �2 xM g N1 µB

1 + �x + �2 x

M3 = Series@M2, 8x, 0, 2<D êê Normal

2

3
g N1 x µB

M4 = M3 ê. 8x → g µB β B0< êê Simplify

2

3
B0 g

2
N1 β µB2
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1

0

0

1

2

1
],,[

2

1
1 yyxx , 

 





















0

0

0

1

,2 xx ,  





















1

0

0

0

,3 yy . 

 

The density operator: 

 



























100

0000

0000

001

2

1

2

1

2

1
ˆ

332211

p

p

pp
p 

 

 

where 

 

1]ˆ[ Tr , 

 

2

1
]ˆ[

2
2 p

Tr


 . 

 

((Mathematica)) 
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_____________________________________________________________________________ 

I. Example-9 

Show for the density operator for a mixed state 

 


k

kk

kp )()(ˆ  , 

 

that the probability of obtaining the state   as a result of a measurement is given by ]ˆ[ PTr , 

where 

 

 P̂ . 

Clear@"Global`∗"D;
expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ψ1 =

1

2

81, 0, 0, 1<; ψ2 = 81, 0, 0, 0<;

ψ3 = 80, 0, 0, 1<;
ρ =

p Outer@Times, ψ1, ψ1D +
1 − p

2
Outer@Times, ψ2, ψ2D +

1 − p

2
Outer@Times, ψ3, ψ3D êê Simplify

99 1
2
, 0, 0,

p

2
=, 80, 0, 0, 0<,

80, 0, 0, 0<, 9p
2
, 0, 0,

1

2
==

ρ êê MatrixForm

1

2
0 0

p

2

0 0 0 0

0 0 0 0

p

2
0 0

1

2
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((Solution)) 

 

















k

kk

k

kkk

km

mkkmk

km

mkkmk

p

p

p

pPTr

2

,

,

,

]ˆ[









 

 

______________________________________________________________________________ 

J. Example-10 

Use the density operator formalism to show the probability that a measurement finds two spin-

1/2 particles in the state xx  ,  differs for the pure Bell state, 

 

],,[
2

1)( zzzz  
, 

 

for which, 

 
)()(

1
ˆ   , 

 

and for the mixed state 

 

zzzzzzzz  ,,
2

1
,,

2

1
ˆ

2 . 

 

Thus, the disagreement between the predictions of quantum mechanics for the entangled state and 

those consistent with the views of a local realist are apparent without having to resort to Bell 

inequalities. 

 

((Solution)) 

The Bell state 
)(  is given by 
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1

0

0

1

2

1)( , 

 

and, the first density operator is  

 



















 

1001

0000

0000

1001

2

1
ˆ )()(

1 , 

 

for the Bell state. 

 

1)ˆ(
2

1 Tr  

 

which means that 1̂  is the density operator for the pure state. 

When 





















1

1

1

1

2

1
, xx , 

 

the projection operator is given by 

 





















1111

1111

1111

1111

4

1
,,ˆ

,
xxxxP

xx
. 

 

Then we have 

 

2

1
]ˆˆ[ 1,
 

xx
PTr . 

 

The probability of finding the system in the state xx  ,  is 1/2. 
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We now consider the second density operator given by 

 























1000

0000

0000

0001

2

1

,,
2

1
,,

2

1
ˆ

2 zzzzzzzz

 

 

Since 

 

2

1
)ˆ(

2

2 Tr  (<1). 

 

2̂  is the density operator for the mixed state. We have 

 

4

1
]ˆˆ[ 2,
 

xx
PTr . 

 

The probability of finding this system in the state xx  ,  is 1/4. 

 

((Mathematica)) 
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Clear@"Global`∗"D; expr_∗ := expr ê. Complex@a_, b_D � Complex@a, −bD;
ψxpT =

1

2

81, 1<; φxp =
1

2

J 1
1
N; φzp = J 1

0
N; φzn = J 0

1
N;

ψ11 =
1

2

HKroneckerProduct@φzp, φzpD + KroneckerProduct@φzn, φznDL;

ψ1 = Transpose@ψ11D@@1DD; ψ21 = KroneckerProduct@φxp, φxpD; ψ2 = Transpose@ψ21D@@1DD;
ψ3p1 = KroneckerProduct@φzp, φzpD; ψ3p = Transpose@ψ3p1D@@1DD;
ψ3n1 = KroneckerProduct@φzn, φznD;
ψ3n = Transpose@ψ3n1D@@1DD;
ψ11 êê MatrixForm

1

2

0

0

1

2

ψ21 êê MatrixForm

1

2

1

2

1

2

1

2
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ρ1 = Outer@Times, ψ1, ψ1D êê Simplify; ρ1 êê MatrixForm

1

2
0 0

1

2

0 0 0 0

0 0 0 0

1

2
0 0

1

2

Tr@ρ1.ρ1D
1

PX = Outer@Times, ψ2, ψ2D êê Simplify;

PX êê MatrixForm

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

Tr@PX.ρ1D
1

2

ρ2 =
1

2
Outer@Times, ψ3p, ψ3pD +

1

2
Outer@Times, ψ3n, ψ3nD ;

ρ2 êê MatrixForm

1

2
0 0 0

0 0 0 0

0 0 0 0

0 0 0
1

2

Tr@ρ2.ρ2D
1

2

Tr@PX.ρ2D
1

4
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______________________________________________________________________________ 

K. Example-11 

Show that the equation governing time evolution of the density operator for a mixed state is 

given by 

 

]ˆ,ˆ[]ˆ,ˆ[ˆ  HH
dt

d
i ℏ . 

 

 

((Solution)) 

 

]ˆ,ˆ[
1ˆˆˆˆ1

ˆˆ1

ˆˆ1

ˆ

H
i

HH
i

HH
i

HH
i

tt

dt

d

dt

d











ℏℏ

ℏ

ℏ































 
 

or 

 

]ˆ,ˆ[]ˆ,ˆ[ˆ  HH
dt

d
i ℏ . 

 

______________________________________________________________________________ 

L. Example-12 

(a) Show that the time evolution of the density operator is given by 

 

)(ˆ)0(ˆ)(ˆ)(ˆ tUtUt   , 

 

where )(ˆ tU  is the time-evolution operator, namely 

 

)0()(ˆ)(  tUt  . 
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(b) Suppose that an ensemble of particles is in a pure state at t = 0. Show the ensemble cannot 

evolve into a mixed state as long as time evolution is governed by the Schrodinger equation. 

 

((Solution)) 

(a) 

 

)()()(ˆ ttt   ,

 

 

where 

 

)0(ˆ)(  tUt  . 

 

Then we get 

 













UtU

UttU

UttUt

ˆ)0(ˆˆ

ˆ)0()0(ˆ

ˆ)0()0(ˆ)(ˆ







 

 

(b) 

Suppose that )0(ˆ t  is the density operator for the pure state. 

 

1)]0(ˆ)0(ˆ[

)]0(ˆ)0(ˆˆˆ[

]ˆ)0(ˆ)0(ˆˆ[

]ˆ)0(ˆˆˆ)0(ˆˆ[)](ˆ)(ˆ[















ttTr

ttUUTr

UttUTr

UtUUtUTrttTr








 

 

Thus )(ˆ t  is still the density operator for the pure state. 

 

26. Canonical ensemble in statistical mechanics 

The time dependence of ̂  is given by 

 

]ˆ,ˆ[ˆ H
t

i  


ℏ . 

 

Note that the sign is opposite to that of the usual Heisenberg operator equation.We see that, if 

)ˆ(ˆ H  is a function only of Ĥ , then 
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0]ˆ,ˆ[ H , 0ˆ 




t
. 

 

For a canonical ensemble we may write 

 

)
ˆ

exp(
1

)
ˆ

exp(ˆ
Tk

H

ZTk

HF

BB




 , 

 

where Ĥ  is the Hamiltonian and Z is the partition function. Since 

 

1]ˆ[ Tr . 

 

Z is given by 

 

)]
ˆ

[exp()exp(
Tk

H
Tr

Tk

F
Z

BB

 . 

 

The Helmholtz free energy F is given by 

 

ZTkF B ln . 

 

Because of the invariance of the trace under unitary operators, we may calculate Z by taking the 

trace of )
ˆ

exp(
Tk

H

B

  in any representation. 

 













n

nn

B

n

n

nn

B

n

nn

B

EE
Tk

E

Z

EE
Tk

H

Z

EE
Tk

H

Z

)exp(
1

)
ˆ

exp(
1

)
ˆ

exp(
1

̂

 

 

where 

 

nnn EEEH ˆ , 
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and 

 

 
n B

n

Tk

E
Z )exp( . 

 

27. Multiparticle systems 

 

27.1 The density operator of two-particles  

The density operator for two spins is given by 

 































































ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

ˆ

44434241

34333231

24232221

14131211

 

 

The reduced density operator 2̂  is obtained from the full density operator by tracing over the 

diagonal matrix elements of particle 1 

 






























44224321

34123311

4443

3433

2221

1211

12 ]ˆ[ˆ









 Tr . 

 

The reduced density operator 1̂  is obtained from the full density operator by tracing over the 

diagonal matrix elements of particle 2. 

 






























44334231

24132211

4442

2422

3331

1311

21 ]ˆ[ˆ









 Tr . 

 

Note that the reduced density operator 1̂  describes completely all the properties/outcomes of 

measurements of the system 1, given that system 2 is left unobserved (”tracing out” system 2). 

This represent the maximum information which is available about the particle 1 alone, irrespective 

of the state of particle 2. 

The reduced density operator 2̂  describes completely all the properties/outcomes of 

measurements of the system 2, given that system 1 is left unobserved (”tracing out” system 1). 
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This represent the maximum information which is available about the particle 2 alone, irrespective 

of the state of particle 1. 

 

((Example-1)) Reduced density operator: Two spins (independent subsystems)  

We consider the state of the composite system 1-2 consisting of independent subsystems  

 





















0

1

0

1

2

1
2,1,2,)1,1,(

2

1
12 zxzzz . 

 

The density operator is obtained as 

 

BA

zzxx

zxzx





ˆˆ

)2,2,()1,1,(

)2,1,)(2,1,(

ˆ
121212









 

 

where A and B denote the particle-1 and particle-2, respectively. 

The matrix form of 12̂  is given by 

 





















0000

0101

0000

0101

2

1
ˆ

12 . 

 

The reduce density operators 1̂  and 2̂  are obtained as 

 

BTr  ˆ
00

01

00

01

2

1

00

01

2

1
]ˆ[ˆ

1212 
























 , 

 

Ar Tr  ˆ
11

11

2

1

00

00

2

1

11

11

2

1
]ˆ[ˆ

1221 
























 . 

 

Note that 
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BAABBAA TrTrTr  ˆ]ˆ[ˆ]ˆˆ[]ˆ[ˆ
1212  , 

 

ABBABAB TrTrTr  ˆ]ˆ[ˆ]ˆˆ[]ˆ[ˆ
1221  . 

 

((Example-2)) Two spins: independent subsystems 

We start with the two-particle pure state 2,1,12 zz  . The density operator is 

 





















0000

0000

0000

0001

2,1;2,1,ˆ zzzz . 

 

The reduced density  

 




























00

01

00

00

00

01
ˆ

1 , 

 




























00

01

00

00

00

01
ˆ

2 , 

 

under the basis of {  ,  }. 

 

((Example-3))  Bell's two-particle entangled state 

 

]2;1;2;1;[
2

1)(

12 zzzz  
. 

 

The density operator is given by 

 






















 

0000

0110

0110

0000

2

1
ˆ

)(

12

)(

12 . 

 

((Mathematica)) 
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The reduced density operator 

 




























10

01

2

1

00

01

2

1

10

00

2

1
ˆ

1 , 

 




























10

01

2

1

00

01

2

1

10

00

2

1
ˆ

2 , 

 

under the basis of {  ,  }. Thus for measurements of particle 1 (or 2) the Bell's state behaves 

like the mixed states of completely un-polarized ensemble. 

 

((Note)) 

M.A Nielsen and I.L. Chuang, Quantum computation and quantum information, 10th Anniversary 

Edition (Cambridge, 2010). 

Notice that this state 1̂  (or 2̂ ) is a mixed state. This is a quite remarkable result. The state 

of the joint system of two qubits is a pure state, that is, it is known exactly, however, the first qubit 

is in a mixed state, that is a state about which we apparently do not have maximal knowledge. This 

strange property, that the joint state of a system can be completely known, yet a subsystem be in 

the mixed state, is another hallmark of quantum entanglement.  

 

27.2 Density operator for three spins 

1
1

0
; 2

0

1
;

12

1

2
KroneckerProduct 1, 2

KroneckerProduct 2, 1 Simplify

0 ,
1

2
,

1

2
, 0

0 12.Transpose 12 Simplify;

0 MatrixForm

0 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 0
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8887868584838281

7877767574737271

1867666564636261

1857565554535251

1847464544434241

1837363534333231

1827262524232221

1817161514131211

ˆ










  

 

where 

 

  ˆ
11 ,    ˆ

12 ,  

 

  ˆ
13 ,    ˆ

14 . 

 

and so on. The reduced density operator 23̂  is obtained from the full density operator by tracing 

over the diagonal matrix elements of particle 1, leading to 

 































































44434241

34333231

24232221

14131211

84838281

74737271

64636261

54535251

44434241

34333231

24232221

14131211

123
ˆˆ






















 Tr

 

 

The reduced density operator 3̂  is obtained from the full density operator by tracing over the 

diagonal matrix elements of particles 1 and 2, leading to 

 





















4443

3433

2221

1211

2,12323
ˆˆˆ







 TrTr

. 
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((Example-1))  Entangled GHS state 

 

][
2

1)( 
GHZ . 

 

The density operator is defined by 

 



  )()(
ˆ

GHZGHZ 
 

 

 
 

The reduced density operators are obtained as 

 





















1000

0000

0000

0001

2

1
ˆ

23 , 

 

and 

 











10

01

2

1
ˆ

3 , 

 

which is equivalent to a completely un-polarized state,  

 

((Example-2))  Another entangled GHZ state 
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][
2

1)( 
GHZ . 

 

The density operator is defined by 

 



  )()(
ˆ

GHZGHZ 
 

 

 
 

The reduced density operators are obtained as 

 





















1000

0000

0000

0001

2

1
ˆ

23 , 

 

and 

 











10

01

2

1
ˆ

3 , 

 

which is equivalent to a completely un-polarized state,  

 

28. Quantum teleportation 
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We consider the pure particle state 123  which is related to the quantum teleportation. The 

density operator for this pure state is given by 

 

123123
ˆ   , 

 

where 

 

)([
2

1
][

2

1

][
2

1
][

2

1

33

)(

1233

)(

12

33

)(

1233

)(

12123

zbzazbza

zbzazbza







 
 

 

with 

 






















0

1

1

0

2

1
][

2

1
2121

)(

12 zzzz , 

 





















 

1

0

0

1

2

1
][

2

1
2121

)(

12 zzzz . 

Note that 
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1
22
 ba . 

 

The density operator ̂  can be obtained as 

 











































00000000

02/2/002/)(2/)(0

02/2/002/)(2/)(0

00000000

00000000

02/)(2/)(002/2/0

02/)(2/)(002/2/0

00000000

ˆ

22**

22**

**22

**22

bbbaba

bbbaba

ababaa

ababaa

  

 

Tracing out particle 1, the reduced density operators are obtained as 

 































































































0000

0110

0110

0000

2

1

0000

00

00

0000

2

1

0000

00

00

0000

2

1

0000

00

00

0000

2

1
ˆ

2222

2222

22

22

22

22

23

baba

baba

bb

bb

aa

aa


 

 

Tracing over particle 2 furthermore, we have 

 





























10

01

2

1

10

00

2

1

00

01

2

1
ˆ

3 , 

 

which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information 

about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until 
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he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into 

the state   that Alice’s particle was in initially. 

 

((Mathematica)) 
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29. Average 1X̂  

Clear "Global` " ;

exp : exp . Complex re , im Complex re, im ;

1
1

2

0

1

1

0

; 2
1

2

0

1

1

0

;

1
1

2

1

0

0

1

;

2
1

2

1

0

0

1

;

1
a

b
; 2

a

b
; 3

b

a
; 4

b

a
;

123
1

2
KroneckerProduct 1, 1

1

2
KroneckerProduct 2, 2

1

2
KroneckerProduct 1, 3

1

2
KroneckerProduct 2, 4

Simplify;

K1 Transpose 123 1 ;

K2 Transpose 123 . a a1, b b1 ;

Outer Times, K1, K2 1 FullSimplify;

MatrixForm

0 0 0 0 0 0 0 0

0
a a1

2

a a1

2
0 0

a b1

2

a b1

2
0

0 a a1

2

a a1

2
0 0 a b1

2

a b1

2
0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
a1 b

2

a1 b

2
0 0

b b1

2

b b1

2
0

0 a1 b

2

a1 b

2
0 0 b b1

2

b b1

2
0

0 0 0 0 0 0 0 0
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We consider the average value of an operator 1X̂  that acts only on the system 1 in a global 

density operator ̂  for the particles 1 and 2; 

 

]ˆˆ[]ˆˆ[]ˆ)ˆˆ[(ˆ
111211211  XTrTrXTrIXTrX  , 

 

where 

 

 ˆˆ
21 Tr . 

 

If 21
ˆˆˆ   , we have 

 

]ˆˆ[

]ˆˆ[]ˆˆ[

)]ˆˆˆˆ[(

)]ˆˆ)(ˆˆ[(

]ˆ)ˆˆ[(ˆ

111

22111

2211

2121

211











XTr

ITrXTr

IXTr

IXTr

IXTrX











 

 

and 

 

12212121
ˆ]ˆ[ˆ]ˆˆ[ˆ   TrTr . 

 

30. Probability 

Suppose that P̂  is the projection operator, 

 

P̂ , 

 

then we have 

 




ˆˆ]ˆ[]ˆˆ[  TrPTr   

 

So the probability of finding the state   in the system is given by the diagonal element. 

 

31. Examples 

31.1  Problem and solution -1 
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Prove that the state of the form 

 





















0

0

212112
yx

xy

yxxy
C

C
xyCyxC , 

 

where 

 

1
22

 yxxy CC , 

 

and both coefficients are non-zero, cannot be written as a Kronecker product state 

 

2112
'   , 

 

with 

 

111
yx yx   , 

 

222
yx yx   . 

 

((Solution)) 

 























yy

xy

yx

xx







2112

' . 

 

Suppose that 
1212

'   . Then we have 

 

0xx , 0yy , yxxyC  , xyyxC  . 

 

Then we get 

 

0 yyxxxyyxyxxyCC  . 
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This is not consistent with the assumption that both xyC  and yxyC  are non-zero. 

 

31.2 Problem and solution-2 

Consider the state vector 

 

][
2

1
2121212112

yyxyyxxx  , 

 

describing the polarization of two photons. Show that the reduced density operators 

 

]ˆ[ˆ
1221  Tr ,  ]ˆ[ˆ

1212  Tr , 

 

describe pure states, where 

 


121212

ˆ  . 

 

((Solution)) 

The density operator: 

 





















1111

1111

1111

1111

4

1
ˆ

12 . 

 

The reduced density operators: 

 











11

11

2

1
]ˆ[ˆ

1221  Tr , 









11

11

2

1
]ˆ[ˆ

1212  Tr . 

 

Since 

 

1

2

1
ˆ

11

11

2

1
ˆ  








 , 2

2

2
ˆ

11

11

2

1
ˆ  








 , 

 

the reduced density operators 1̂  and 2̂  describe pure state. 

 

33. Schmidt decomposition 

((Theorem)) 
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Suppose that   is a pure state of a biparticle composite system, AB. Then there exist orthonormal 

states Ai  for system A, and Bi  for system, B such that 

 


i

BAi iip , 

 

where ii p is known as Schmidt coefficient and is non-negative real number satisfying 

 

1
2 

i

i , or 1
i

ip . 

 

The states Ai  and Bi  are any fixed orthonormal bases for A and B (the relevant state spaces are 

here of the same dimension). 

 

The density operator is defined by 

 

 ˆ . 

 

Note that 

 


i

iTr
22 ]ˆ[  . 

 

If 1]ˆ[ 2 Tr  (pure state), 1i  for one and only one i and zero for all others  

 

__________________________________________________________________________ 

We consider the simple case. 

 

1222122121121111 baCbaCbaCbaC  , 

 

2221111 wvpwvp  . 

 

The unitary transformation: 

 

22111111
ˆ aUaUaUv  , 

 

22211222
ˆ aUaUaUv  , 
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where 

 











2221

1211ˆ
UU

UU
U ,  1̂ˆˆ UU . 

 

We also have 

 

22111111
ˆ bVbVbUw  , 

 

22211222
ˆ bVbVbUw  , 

 

where 

 











2221

1211ˆ
VV

VV
V , 1̂ˆˆ VV . 

 

Then 

 

222222221211121222211211

212212221111111212211111

2221122221122

22111112211111

222111

)()(

)()(

)((

)((

baVUpVUpbaVUpVUp

baVUpVUpbaVUpVUp

bVbVaUaUp

bVbVwaUaUp

wvpwvp











 

 

Then we have 

 

122121111111 VpUVpUC  ,  222122111112 VpUVpUC  , 

 

122221112121 VpUVpUC    222222112122 VpUVpUC  . 

 

Using the matrix form, we get 
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T

T

VdU

VV

VV

p

p

UU

UU

VV

VV

p

p

UU

UU
C

ˆˆˆ

0

0

0

0ˆ

2221

1211

2

1

2221

1211

2212

2111

2

1

2221

1211



























































 

 

where d̂  is a non-negative diagonal matrix, and TV̂  is the transpose matrix of V̂ . 

 











2

1

0

0ˆ
p

p
d . 

 

Thus we have 

 

















dd

UU

UdVVdU

VdUVdUCC

TT

TT

ˆˆ

)ˆˆ(

)ˆˆˆ)(ˆˆˆ(

)ˆˆˆ)(ˆˆˆ(ˆˆ

 

 

In order to determine the values of 1p  and 2p , we need to solve the eigenvalue problem of CC ˆˆ , 

if CC ˆˆ  is not a diagonal matrix. 

 

Thus we can calculate the Schmidt numbers 

 

((Example-1))  Pure state 

 

]0100[
2

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 

 











00

11

2

1
Ĉ , 










11

11

2

1ˆˆ CC . 

 

The eigenvlaue problem of CC ˆˆ  ; 
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eigenvalue; 11 p , eigenket: 








1

1

2

1
, 

 

eigenvalue; 02 p , eigenket: 








1

1

2

1
. 

 

So there is only one nonzero Schmidt coefficient and thus   is a product state. 

 

((Example-2))  Entangled state 

 

]1100[
2

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 

 











10

01

2

1
Ĉ , 










10

01

2

1ˆˆ CC . 

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
2

1
1 p , eigenket: 









0

1
, 

 

eigenvalue; 
2

1
2 p , eigenket: 









1

0
. 

 

So there are two nonzero Schmidt coefficients and thus   is an entangled state. 

 

((Example-3))  Entangled state 

 

]1001[
2

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 
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01

10

2

1
Ĉ , 










10

01

2

1ˆˆ CC . 

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
2

1
1 p , eigenket: 









0

1
. 

 

eigenvalue; 
2

1
2 p , eigenket: 









1

0
. 

 

So there are two nonzero Schmidt coefficients and thus   is an entangled state 

 

((Example-4)) 

 

]110100[
3

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 

 











10

11

3

1
Ĉ , 










21

11

3

1ˆˆ CC . 

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 873.01 p , eigenket: 








85.0

53.0
, 

 

eigenvalue; 127.02 p , eigenket: 








 53.0

85.0
. 

 

So there are two nonzero Schmidt coefficients and thus   is an entangled state. 

 

((Example-5)) 
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]1
2

1
0

2

1
][1

2

1
0

2

1
[1]11100100[

2

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 

 















11

11

2

1
Ĉ , 














11

11

2

1ˆˆ CC . 

 

The eigenvalue problem of CC ˆˆ  ; 

 

eigenvalue; 11 p , eigenket: 








1

1

2

1
. 

 

eigenvalue; 02 p , eigenket: 








1

1

2

1
. 

 

So there are one nonzero Schmidt coefficients and thus   is a product state. 

 

((Example-6)) 

 

]11)32(10)32(01)61(00)61[(
62

1
 . 

 

We construct Ĉ  and CC ˆˆ  . 

 

















3232

6161

62

1
Ĉ , 














21

12

4

1ˆˆ CC . 

 

The eigenvlaue problem of CC ˆˆ  ; 

 

eigenvalue; 
4

1
1 p , eigenket: 









1

1

2

1
. 

 

eigenvalue; 
4

3
2 p , eigenket: 









1

1

2

1
. 

 



 

94 

 

So there are one nonzero Schmidt coefficients and thus   is an entangled state. 

 

34. Schmidt decomposition application 

It is very easy to compute the reduced density operator given the Schmidt decomposition 

 


i

BAi iip . 

 

The density operator is 

 


ji

BABAji jjiipp
,

̂ . 

 

The reduced density operator is given by 

 









i

AAi

kji

AABBBBjiB

iip

jikjikppTr
,,

)ˆ(
 

 









i

BBi

kji

BBAAAAjiA

iip

jikjikppTr
,,

)ˆ(
 

 

We note that the spectrum (i.e., set of eigenvalues) of both reduced density operators are the same. 

 

35. Purification 

Suppose we are given a state Â  of a quantum system A. It is possible to introduce an 

additional system, which we denote R (R has the same dimension as A) and define a pure state 

AR  for the joint system AR  
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such that  

 

ARARTrRA ̂ . 

 

That is, the pure state AR  reduces to Â  when we look at system A alone. This is a purely 

mathematical procedure, known as purification, which allows us to associate pure states with 

mixed states. For this reason we call system R a reference system: it is a fictitious system, without 

a direct physical significance. 

 

((Proof)) 

To prove that purification can be done for any state, we explain how to construct a system R 

and purification AR  for Â . Suppose Â  has orthonormal decomposition 

 


i

AAiA iip̂ . (mixed state) 

 
To purify Â , we introduce an additional system R which has the same dimension as system A, 

with orthonormal basis states Ri , and define a pure state for the combined system 

 


i

RAi iipAR . (pure state) 

 

We now calculate the reduced density operator for the system A corresponding to the state AR  
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A

ji

AAi

ji

ijAAji

ji

RRAAji

ji

RARAjiR

iip

jipp

jiTrjipp

jjiiTrppARARTr





ˆ

)(

)()(

,

,

,

,



















 

 

Thus AR  is a purification of Â . 

 

Notice the close relationship of the Schmidt decomposition to purification: the procedure used to 

purify a mixed state of system A is to define a pure state whose Schmidt basis for system A is just 

the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root 

of the eigenvalues of the density operator being purified. 
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______________________________________________________________________________ 

APPENDIX 

Density operator (problem) 

A spin=1/2 particle is in the pure state, 

 

zbza  . 

 

(a) Construct the density matrix in the Sz basis for this state. 

(b) Starting with your result in (a), determine the density matrix in the Sx basis, where 
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][
2

1
zzx  , ][

2

1
zzx  . 

 

(c) Use your result for the density matrix in (b) to determine the probability that a measurement 

of Sx yields - 2/ℏ for the state. 

(d) Starting with your result in (a), determine the density matrix in the Sy basis, where 

 

][
2

1
zizy  , ][

2

1
zizy  . 

 

(e) Use your result for the density matrix in (b) to determine the probability that a measurement 

of Sy yields + 2/ℏ for the state for the state. 

 

((Solution)) 

 

(a) The density matrix in the Sz basis: 

 

 

































2*

*2

**

**

**ˆ
bba

aba

bbba

abaa
ba

b

a
 . 

 

(b) 

 

zUUz

zUbbbbUz

xbbbbxxx

xx

bb
xx

bb













ˆˆˆ

ˆ""ˆ''ˆ

""ˆ''ˆ

",'

",'







 

 

Then the matrix density x̂  under the basis of { x , x } is obtained as 
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2**22**2

2**22**2

2*2*

*2*2

2*

*2

2

1

11

11

2

1

11

11

2

1

11

11

2

1
ˆ

bbaababbaaba

bbaababbaaba

bbabba

abaaba

bba

aba
x

 

 

where zb ' , zb " ,  xa ' , xa " , 

 

zUx x  ˆ , zUx x  ˆ , 

 













11

11

2

1ˆ
xU , 












11

11

2

1ˆ
xU . 

 

(c) 

 

2

**

2**2

2**22**2

2**22**2

2**22**2

2

1

))((
2

1

][
2

1

00
[

2

1

]
2

1

10

00
[]ˆ)[(

ba

baba

bbaaba

bbaababbaaba
Tr

bbaababbaaba

bbaababbaaba
TrxxTr x












































 

 

 

((Note)) 

Since ̂  is the density operator for the pure state, the probability that a measurement of Sx yields 

- 2/ℏ for the state for the state can be also calculated as 

 

  2

2

2

2

1
11

2

1
)( ba

b

a
xxP 








  . 

 

without using the density operator. 
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This method is not useful when ̂  is the density operator for the mixed state. 

 

(d) 

 

zUUz

zUbbbbUz

ybbbbyyy

yy

bb

yy

bb













ˆˆˆ

ˆ""ˆ''ˆ

""ˆ''ˆ

",'

",'







 

 

Then the matrix density ŷ  under the basis of { y , y } is obtained as 

 












































 































 


2**22**2

2**22**2

2*2*

*2*2

2*

*2

2

1

1

1

2

1

11

2

1

1

1

2

1
ˆ

bbiaiababbiaiaba

bbiaiababbiaiaba

bibabiba

iabaiaba

i

i

iibba

aba

i

i
y

 

 

where zb ' , zb " ,  ya ' , ya " , 

 

zUy y  ˆ , zUy y  ˆ , 

 













ii
U y

11

2

1ˆ , 






 


i

i
U y

1

1

2

1ˆ . 

 

(e) 
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2

**

2**2

2**22**2

2**22**2

2**22**2

2

1

))((
2

1

][
2

1

00
[

2

1

]
2

1

00

01
[]ˆ[

iba

ibaiba

bbiaiaba

bbiaiababbiaiaba
Tr

bbiaiababbiaiaba

bbiaiababbiaiaba
TryyTr y
















 



























 

 

 

((Note)) 

Since ̂  is the density operator for the pure state, the probability that a measurement of Sy yields 

+ 2/ℏ for the state for the state can be also calculated as 

 

  2

2

2

2

1
1

2

1
)( iba

b

a
iyyP 








  , 

 

without using the density operator. 


