Density operator
Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: October 30, 2019)

1. Introduction

The quantum-mechanical description based on an incomplete set of data concerning the system
is effected by means of what is called a density operator. Such a density operator was introduced
by von Neumann in 1927 to describe statistical concepts in quantum mechanics. Most physical
systems consist of so many particles, or posses so many degrees of freedom. that it is impossible
to specify completely the state of these systems. Nevertheless, physicists are forced to make
predictions about the behavior of the systems they study from a knowledge of a very small number
of parameters. To this end, one can use statistical methods and introduce representative ensembles
which are collections of identical systems.

The density operator is an alternate representation of the state of a quantum system for which
we have previously used the wavefunction. Although describing a quantum system with the
density matrix is equivalent to using the wavefunction, one gains significant practical advantages
using the density matrix for many physics problem. For a quantum mechanical system there are,
in general, two reasons for statistical treatment: lack of detailed knowledge and the probabilistic
nature of quantum mechanics. The statistical treatment is carried out by means of the density
matrix which takes the place of the ensemble density in classical statistical mechanics. This
operator — as all physical quantities in quantum mechanics, the density matrix is an operator — can
be used to evaluate averages.

2. Definition of density operator
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Fig. Ensemble average. Definition of the density operator.

We suppose that the state ket vector of a system is represented by

lv)=2.clu,)-
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We define the density operator as
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with the matrix element

u, )u,

luq>[u2> |un>

Superpositiol

b



*
um>=cc ,

n-m

P =1, |P

where the bar denotes ensemble average; that is, average over all the systems in the ensemble.
Then the density operator p has the following properties.

A

(a) o =p. (Hermitian operator)
®  TpI=1.

((Proof))

(wlw)=2c c,=2 ¢ e, =2 p.=Trlpl=1.

(c) The ensemble average of the expectation of an observable A is given by

(4)=Tr{4p].

((Proof))
(w|Alw)=> ¢ c,(u,|A|u,)
=> o, | Alu,)
=>"(u,| p|u,)(u, | A|u,)
=>"(u,| pA|u,)
=Tr[pA]
(d)

We define a new basis as

4,)=U

such that



A

ple,)=w,

4,)

where U is the unitary operator. Note that

A

(8]p

¢j> =(u, |U+/60

uj> =w0,

i,j

(e) Equation of motion
The time dependence of p is given by

A

d . .
ih— p=-p,HJ.
dtp [0, H]

This equation is analogous to the Liouville theorem in classical theory.

< p=lniw
e
—— vy |-|v)v |
—— Ay |-l
— = i =[]

Note that this equation of motion is a little different (in sign) from the equation of motion of the

Heisenberg operator A, .

d ~ 1 ~ A
— A4, =—I]A4, ,H].
dt " ih[H ]

3. Pure state

b

p=lw)y

A2

A =lw)wlw)v|=5.



Then we have

This is the definition of the density operator for the pure state.

Alv)=ly)wlv)=lv).
Then |y) is the eigenket of p with the eigenvalue 1.

4. Mixed state
We use the following notations.

a,)=|¢,) & |b,)=lu,)
with

$.)=Ulu,)
where

plg,)=w,|4,),

Here wy is the eigenvalue and ¢n> is the eigenket of p with the eigenvalue w.

We define the unitary operator as



or

U*pU

w,).

ul’l> = Wl’l

Then we have

w0 0 0 0
0 w, 0 0 0
UpU=0 0 w, 0 0], (diagonal matrix)
0O 0 o . O
0 0 0 0 o
or
<ui |U+/60 uj> =W,

under the basis of { un> }. So the density operator can be rewritten as

b

WA WIS XA

where

4,)-

>

w, = (¢,




We note that

=1
or
EIEDRCAVILY
:Zk:Wk <¢k|¢k>
:Zwk
=1
TP 1=) w2 <> w =1
since

2
w,"<w,.

The expectation value is given by

(4)= ZW (8, 4]g,)=Tr[ 5],



since

THA4p)= (4,|4p
=2.{¢,

n,m

R

n,m

o

n,m

ZZn:W<

4,)
¢Mm
4, )8
$) 00,
4,)

4,)
4.)

F

For the projection operator, we have

A

P¢m =

8,8,

and
TrE, pl=w,,
since
THE, P1= X B |8,)= 2w,
S. Example: density operator for the un-polarized light

(a) The pure state
We now consider the density operator of the linearly polarized photon,

p= | x'> <x' , (the pure state)

where |x'> = cos6’|x> + sin6’| y> . The corresponding density matrix under the basis of {|x> and

| y> } can be given by



. (cosd i
p=(, j(cos@ sin@)

sin @

3 cos’ 0 sinf@cosd
sin@cos@ sin’ @

_ 1(1+cos(20)  sin(20)
" 20 sin20)  1-cos(20)

P’ can be also calculated as

sinfcos@®  sin’@

. cos’d  sin@cos@| cos’@  sinOcosd
sinfcos@  sin’ @

sinfcos@®  sin’@

_ ( cos’@  sinfcos HJ .

satisfying the condition for the pure state.

x) x|l = Tr[[ 050 sinfcos 9}[1 OJ] =cos’ @ = Kx v)

2
’

sinfcosf  sin’d L0 O

2
’

R ke &

sinfcos® sin’d N0 1

J] =sin” 0 ={(y|y)
where
(x|x") = cos (x| x) +sin (x| y) = cos 0,
(y]y")=cosO(y|x)+sind(y|y) =sin6.
(b)  The mixed state

What is the density operator for the un-polarized light? To obtain it, we take the average of
each matrix element of the density operator in the pure state over @between 0 and 2 7;



27 27
L J.cosz alo L_[sianostﬁ
~ | 27y 27 _11 0
Pun 1f 200 1)

2z
—Isianostﬁ LJ.sinzﬁdﬁ
2z 27y

0

which is the density matrix for the un-polarized light.

Since

11 0]
pun_401 pun’

the density operator for the un-polarized light p,, is for the mixed state. The transition from a

pure state into a mixed state is connected with the loss of no-diagonal elements in the density
matrix. The interference terms appear as non-diagonal elements in the density matrix.
We note that

/2 01 0 12 0) 1
D=1 1000 of "0 o)72

=T 12 0Yo o) (0 0) 1
YWI=TA 0 0o (5T 12T

10

Tr[ﬁun

Tr[ﬁun



6. Example: the difference between the pure state and mixed state

We consider the state given by

| >_ cosd
vi= e’sin@)’

Does the density operator

define a density matrix?

((Solution))

A cos’ @ e sinfcosé
e sin@cosé sin’ @ ’

mpl=1,  THA*)=1,
p=p.
For any | 7), we have

(218l 2)=[(xlw)f =0

So p is the density operator for the pure state.

((Mathematica)
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Clear["Global "%"];

*
exp 1=

exp /. {Complex[re , im ] » Complex[re, -im]};

_ Cos|[96] .
vl = (Exp[i $] Sin[e] )

Y11 = Transpose [¥y1][[1]];

p = Outer|Times, Y11, Y11 *| // Simplify

[{cos[e]1?, e’ cos[6] sin[6]},
[e'®cos[e] sin[e], sin[6]°})

o // MatrixForm

Cos[0]? e % cos[6] Sin[6]
el ? cos[0] sin[0O] sin[6]?
p.p // Simplify

[{cos[e]?, e*?cos[0] Sin[e]},
[e*?cos[6] sin[6], sin[6]°}]

Tr[p] // Simplify

1

Tr[p.p] // Simplify
1

75 Density matrix of a perfectly polarized spin (pure state)
((Cohen-Tannoudji et al.))

We start with the case of spin § = 1/2

where

S

X

<l// 1//> =§sin0cos¢,

12



A ho. .
<l//|Sy|l//>=Esmesm¢,

(w[S.lw) =§c0s0,
or

(W|Sly)=n,
and

(13| =5 sino.
where

‘<l// |3’ L|l//>‘ is the projection of ‘<l//|§ | l//>‘ onto the x-y plane.
The density operator (matrix) p(6,¢), corresponding to the state |+ n> .

50.6) =y )| =] o
N

—it

2 el

e 0052 (i;’ 0 ﬂ% ‘ GJ

= p e cos— e “sin—
2 2

i~

e ?sin—
2
cos? 0 e sin—cos—
_ 2 2
' sin—cos— sin? (4
2 2 2
_ Pis erJ
P P

The matrix is generally non-diagonal.
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The “populations” p,, and p__ have a very simple physical significance,

0 0 2 /4
= 2_— 1 2—: = —
P., —P__=CO0S 5 sin 5 cos@ h<Sy>,

o

2 s 2

+ =cos"—+sin"—=1.
Pir TP 7 7

The populations are therefore related to the longitudinal polarization.
The “coherence” p, , p_.:

b

.0 6 1. 1 A
|p+7| —|pf+| = SIHECOSE —Esmﬁ —%‘<1/1|SL|1//>

where
A n .
‘<I/I|SL|1//>‘ =Esm0.

The argument of p, , p_, is ¢, that is, the angle between ‘<1//|3’ L|1//>‘ and the x axis. Note that

—+

P (0,9) =|+n)(+ n|+ n)(+ n|=|+n)(+ n| = 5(0,4),
is a relation characteristic of a pure state.
8. A statistical mixture; un-polarized spin

The only information we possess about the spin is the following. It can point in any direction
of space and all directions are equally probable. The situation corresponds to a statistical mixture

of the state |+ n> with equal weights.

14



1

R 1 X 1 2z V4 ) A -
p=—[d0p(0,4)=— [dg[sin0d6p(0,4) = | 2
4 4z 0 0 0

1 2r T ‘ . 1 2r T ‘ ZH
E.([dgé.([smﬁdﬁpn(ﬁ,@:z.([d;/ﬁ.([sm&’cos 40
1. 17 .
= 27— j sin@(1 + cos 0)d 6
dr 2y

L j (sin@ +1sinze)de
49 2

1 2r T ‘ . 1 2r T ‘ ‘ ZH
E£d¢£sm9depzz(e,¢)=z£d¢£sm9sms 40

:L27z

1 j sin@(1 — cos9)d o
Az 2 7

1 j (sin@ ~Lin 20)d6
49 2

l 2r V.4 l 2r ' T 0 0

— | do|sin@dOp,,(0,4)=— | e ?d@| sin Osin—cos—d O

M! ¢! 1 (6.9) M{ ¢! 5 cos
=0

So we have

So p is the density operator for which a statistical mixture of states. Note that

<S> =Tv[pS. 1= Tr[%iﬁi] =%Tr[§i] = 0.

15



We again find that the spin is unpolarized: since all the directions are equivalent, the mean value
of the spin is zero,

(5)=(3.)=(3) =

((Comment))

(1) The coherence” p, and p_, are related to the transverse polarization <§ L> of the spin.

Upon summing the vector <§ L> corresponding to all (equiprobable) directions of the x-y

plane, we obviously find a null result.
(i) It is impossible to describe a statistical mixture by an average state vector.

We assume that we are trying to choose o and /8 so that the vector is given
v)=al+2)+ Bl-2).

with
o +]A]" =1,

represent an unpolarized spin, for which

A« O 1Ya) n . .
)2 [0 o)t

j%(a*ﬁ—aﬂ*):o,
1

<
S~——

Il
N |
Q-*
NQ-)(-
=
~. o
S
N—
7~ N\
= R

and

h( « N1 O0Ya) B . .
ST ) (e

16



Then we get
o p=0, | =|pf ==
’ 2
Thus we cannot find  and £ so that <§X> = <§y> = <§Z> =0.

9. Mixed state: another example of a statistical mixture
We could imagine other statistical mixture which would lead to the same density matrix.

(1) A statistical mixture of equal proportions of |+ Z> and |— Z>

o=l e g=a2=1 0 o)*ale 1) 3lo o
PERITEATETRITETA 510 o) 210 1) 7200 1)

(i) A statistical mixture of equal proportions of |+ n> and |— n>

p= (em) o] +|-m) (-n

o)

Since all the physical predictions depend only on the density matrix, it is impossible to distinguish
physically between the various types of statistical mixtures which lead to the same density matrix.

1
2
1
2

We note that

2 2 2 % 0
ﬁz :ﬁx :ﬁy = 1 >
0 —
4
n . . 1 .
Tr[pzz] = Tr[pxz] = Tr[pyz] = 5 (mixed state)

17



10. Mixed state: Spin 1/2 in the thermodynamic equilibrium in a static magnetic field
The spin of the electron has a magnetic moment (spin magnetic moment) as

~ 215 &
g
H 7

where S is the spin angular momentum. The spin Hamiltonian in the presence of a magnetic
along the z axis is

A . A h .
A=—j, -B=a8 =2

where

eB
mc

@, (Larmor angular frequency)

The eigenvalue problem:

H+z>— > UZ+Z>— > |+z>,
I:I—z>:hw°62—z>:—h§j°|—z>.

The system is in the thermodynamic equilibrium at 7. We can assert that it has a probability

lexp(— ha, ), of being in the state |+Z>, and
Z 2k, T

1 ha, o

—ex , of being in the state |—z),
79 g |- 2)

where kg is the Boltzmann constant and Z is the partition function is defined by

ha ha
) +exp(—).
2k,T 2k,T

Z =exp(—

We have another example of a statistical mixtures, described by the density matrix

18



5 1 exp(— 2kBT) 0
‘ 0 =P (2hkf0T)
with
P EP.

The non-diagonal elements are zero. We note that

(8.)=1148.1=0,

<§y>=Tr[,a§y]=0,

ha

ha, )= exp(+ ha,
2k,T

2k,T 2k,T

)] = —gtanh( ).

($.)=11A8.1 = lexa(-

Since <1, this polarization is less than the value 5 which corresponds to a spin

@
)

B

tanh( h
2k

which is perfectly polarized along the z axis. “Partially polarized along the z axis.

11.  Example: Cohen-Tannoudji
Quantum Mechanics Chapter 4 exercise (4-4)

A beam of'atom of spin 1/2 passes through one apparatus, which serves as a "polarizer"
in a direction which makes an angle # with Oz in the xOz plane, and then through another
apparatus, the "analyzer," which measures the S, component of the spin. We assume that
between the polarizer and the analyzer, over a length L of the atomic beam, a magnetic
field Bo is applied which is uniform and parallel to Ox. We call v the speed of the atoms
and T =L/v the time during which they are submitted to the field Bo. We set @, =—)B,.

(a) What is the state vector |l//1> of'a spin at the moment it enters the analyzer?

19



(b)

(c)

Show that when the measurement is performed in the analyzer, there is a

probability  equal to %[l+cos&’cos(a)0T )] of finding +§ and

1 : : N :
E[l —cos@cos(w,T)] of finding —g . Give a physical interpretation.

Show that the density matrix p, of a particle which enters the analyzer is written,

— z> } basis:

in the {|+Z>,

2

. 1{ l+cosOcos(w,I) sin@+icosOsin(w,T)
sinf —icos@sin(w,I')  1-cosBOcos(w,T)

Calculate 7 r[ﬁlﬁx], T r[ﬁIS' ,1, and T r[[)IS'Z]. Give an interpretation. Does the

density operator p, describes a pure state?

Now assume that the speed of an atom is a random variable, and hence the time 7
is known only to within a certain uncertainty A7. In addition, the field By is
assumed to be sufficiently strong that @,AT >>1. The possible values of the

product @,T" are then (modulus 27) all values included between 0 and 2m, all of

which are equally probable.
In this case, what is the density operator p, of an atom at the moment it enters

the analyzer? Does p, correspond to a pure case? Calculate the quantities
T r[ﬁzﬁx], T r[[)2§ ,1, and T r[[)zﬁz]. What is your interpretation? In which case

does the density operator describe a completely polarized spin? A completely
unpolarized spin?
Describe quantitatively the phenomena observed at the analyzer exit when @,

varies from zero to a value where the condition @, AT >>1 is satisfied.

((Solution))

(a)

cOS—
RN N 0 _
|+n>— 0 —cosz|+z>+sm2| z> atr=20.

sin—

20



The Hamiltonian is given by

H=—w,0,

N | S

Time evolution operator:

|l//(t = T)> = exp(—%ﬁlT)|+n>
= exp(—é @,6.T )| + n>

w,T

COS

w,T w,T

—isin cos

w,T w,T

0 .. 0 .
COS—COS —isin—sin
2 2

w,T

w,T

.0 . .0
—icos—sin +sin—cos
2 2

Note that

eXp(_é woé-xt) = exp(—é woé-xt)n + x><+ x| + | - x><_ x |)
=& 4 x|+ 2= x) ]

U0 2|+ 2t 2|+ 2= )20

Il
-
Q

where

21



with

Then we have

(b) Density matrix for the pure state

Il//(t=T)>=(;J,

where

w,T

w,[ .. 0 .
—isin—sin ,
2 2

0
& = COS—CO0S
2

2

.0 . .0 T
f =—icos—sin + sin — cos .
2 2 2

We define the density matrix for the pure state as

A, =|w(t=T)><w(r=T)|=[;j(a* ﬂ*)=[;‘i’ﬂ ;ﬁ*}

where

=cos’ Qcosz ol + sin? Qsinz @
2 2 2 2

= %[1 +cos @ cos(w,T)]

22



p._=af

0 2] a)OT
=sin—cos—
2 2
1_. .
- 5 [sin @ +icos@sin(w,T)]
= ﬁa*
=sin il
2
1_. .
- 5 [sin @ —icos@sin(w,T)]
=pp
= cos’ Qsinz DL | Gin? Qcosz @l
2 2 2

= %[1 —cos 0 cos(w,T )]

Of course, we have

A

P :[)17

from the definition of

p, = | wit=T )><l//(t = for the pure state.

(8.)=1r1p8.]

e
2 a f 1 0

:ﬁm(“? J]
2 \pp
h
2

:%(aﬁ +a ﬂ)— siné

23



= g(aa* - BB )= %cos@cos(a)OT)

(d) The possible value of the product 7 =@,T are all values included between 0 and 2,

all of which are equally probable.

1% _ 1( 1 sind
Py =~—|dp = ’

27 2\sinfd 1
with
=T .
Note that
27 27
[dzsin(z) =0, [drcos(z)=0.
0 0

Then we find that

24



L2 1 1 ~sm@) 1 sinf
7 "4lsing 1 \sino 1

1 l1+sin’@  2siné o
4\ 2sin@ 1+sin’ @ 0

Therefore p, correspond to the mixed state case.

(8.)=11p.8.]

A 1 sin@) 0 1
=—Tr]| . ]
4 [sm@ lj[l OJ
in&d 1
=ETr[ sin . ]
4 1 sin@

=—sind
2

(8,)=114.53,)

1 sin@\(0 —-i
sin@ 1 i 0
]

(8.)="p,5.]

i 1 sind\1 0
=—Tr[| . ]
4 sin@ 1 0 -1

I 1 —siné
=—Tr| . ]
4 siné -1

=0

12. Eigenvalue problem (formulation)
Here we use

25



Suppose that the density operator can be described by
p=2m14)4l.

under the basis of {|¢,) }. |#,) is the eigenket of 5 with the eigenvalue wi.
Plo)=20w, |0 )(6[d)= 2w, |66, = w]4)

Here we choose the basis {|5,) }, where

|ai>:U|bi>, |ai>:0|bk>,

where

l}:UZ|”i><”i|: Zl:l}|”z><”z| :Zi:|”i><ui|’

<”k|¢l>:<uk|ﬁ|”l>:U

The matrix element under this basis is
| Bl =2 G | ) )
The eigenvalue problem:
plé)=wld),
2o Pl ) ) = v ).

Since

(1 |4)=U

26



> (u|plu)U, =wU,, (eigenvalue problem)
/
Pu Po - - - o Py Uy Uy
Py Py - - o Py || Uy U,
:M}l 5
pnl pn2 oot pnn Uni Uni

=218 ]= 2 wU ), 0" = U wifat ) pU

13. The use of Mathematica for the calculation of the density operator
We use the following Mathematica program for the calculation of density operator.

(1)

T A].
(ii)
|‘//1 ><‘//2 | .
(a)
w,.Ti ransposEl//;]
when
al bl
a, b,
v.)= ’ v,)=
al’l bl’l

27



(b)
Outer[ Times, l/ll,l//;] — | t//1><t//2 |

when |l//1> and |l//2> are given by

|‘//1>:(a1 a - - an)’ |‘//2>:(b1 b, - -+ - - bn)

(iii)
KroneckerProduct[y,,y, ] | l//1> ® | v, >

(i)  Eigenvalue problems
Eigensystem
Orthogonalize
Normalize

Suppose that the matrix of 5 is given in the form of » x n matrix. We solve the eigenvalue

problem of the matrix of 4 using the Program "Eigensystem".
Eigensystem[ p ]
Suppose that there are n eigenvalues and the corresponding normalized kets.
Wi ) (i=1,2,.,n).
where
<V/,~ ‘V’f> =9

Then we have the diagonal form of the density operator as

/A?Z/A?Zl” v | :Z/A’| v |:ZW1‘| v )V

b

using the closure relation (completeness).
14. Example: eigenvalue problem

28



The density matrix (2 x 2 matrix) is not diagonal.

T B o U e B R B 1)
Note that

7=

T =T =1,

satisfying the condition for the pure state.
Eigensystem[ p |;

Eigenvalue Eigenket

-1 =5 )2

2
GJ4+xy

W2:0 |l//2>=

1

Then we have

R (A ARIZAA)
= W1|W1><W1|+W2|W2><W2|
= W1| W1><W1|
=|=x){-+]
15. Density operator for the spin 1/2 system

((L.I. Schift))
In general the density operator for the spin 1/2 system can be described by

n [pn plzJ ai+a6—x+ﬁ6_v+7&v 1(“"‘7 a_iﬁJ
p: = = —_——= — 5

P Pn 2 2\a+if a-y

29



where a, o, f, and yare real numbers. Since Tr{p]=1, we get

at+y+a-y
2

1,
or
a=1.

Then the density operator can be rewritten as

P =P,

:li+l\/a2+ﬂ2+7/2( d G, + P
22 ,0!2+,32+}/2 ,0!2+,32+7/2

= %[ih/az + B +y (6-n)]
with
|n| =1, (n: unit vector)

and

a B Y

n:( > > )'
Vol + 7 o'+ pr ey ol + 4y
Note that
,5221 a’+ Pyt +1+2y 2(a—ip)
4 2(a +ip) a’+ By +1=-2y

For the pure state, we have

P =p, or TP 1=THpl=1,

leading to the relation
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o+ +y =1,

Then the density operator for the pure state is
5,= (1 +6-n)
= — o - .
P )

16. Comment on the density operator for the pure state
The density operator for the pure state can be described by

/spm=|w><w|=['i f’éj,
En |l

where

=22 £)
n
with

F +of 1.

We note that

2 * R 1+n n.—in
poe=| ST =1<1+&-n)=1( =T
En Il 2 2\n, +in, 1-n,

or
n=En+éy,  on,==iEn=8n),
n, =2 —1=1-2.

The expectation values of spin components are given by

A A 1 A oA A 1 A
W6 lw)=1r(6.5,) = 3176, + 6 -m] =S Tr(6,(6-m] = n,,
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where

r|o =1r|O =1rlo =2.
Tr[é6 T[Ayz] 6.} =2

Then we have

% % 0 1 % %
<W&x'//>=(§ 7 ° =&n+dén =n,,
I ON\n
* * 0 -1 * *
<WU}I//>=(§ ) Ol i =—i(En—-¢&n)=n,,
% % 1 0 2 2 2 2
<l//UAZW>:(§ n 0 —1 i :|é‘| —|77| :2|§| —1:1—2|77| =n,.

17. Density operator: the Bloch-sphere for mixed states

We discuss the general case (both the pure state and mixed state). For convenience we use
CX:]/)'“ ﬂ:]/;” y=r,.

An arbitrary single qubit density operator can be written as
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l+r, r.—ir

sl a2 2
p—5(1+rx0'x+ry0'y+rzaz)— rovin, 1Zr |’
2 2

where ¥ = (I”x,l”y,l”z) is an arbitrary real vector of length |r| <1. We see that

Tr[p]=1.

We calculate

Tr[[)z]zé(lﬁtr-r),

When |r| <1, p is the density operator of a mixed state. When |r| =1 (i.e., the points are on the

surface of the Bloch sphere), s is the density operator of a pure state;

THp']=1.

Ir(pl=1,

(o.)=Tp6]=r., (o,)=1r1p6,1=r,. (0.)=Trp6.1=r.
Tr[(|+ x)(+ x)p] = 1+2rx . Trl(|-x)-xpl= ! 2” :

P DAI= 2, T A=

Tr((|+ 2)(+ z)p1= lzrz . Tr[(|-2)-z )ﬁ]=1_Trz,

((Mathematica))
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Clear["Global *"];

expr * :=

expr /. Complex[a , b ] =» Complex[a, -b];

e [0, o (O R, (L0,
"l 10/ Y"1 0/79%% {0 -1’

10
El = ;
(o 2)
El+rxox +r + rz oz
o= 2y e // Simplify
1+rz 1 ) 1 , 1-rz
H 2 ’E(rx_lry>}’{2(rx+lry>’ 2 }}

1 1
Yyxp=— {1, 1}; yxn = — {1, -1};
2 V2

1 1
yyp= — {1, i}; yyn = — {1, -i}; Yyzp = {1, 0};

\2 \2
Yzn = {0, 1}; ox = ((1) cl));oy= (g _01);

Gz_lO.
“\o -1/’

34



Axp = Outer[Times, Yxp, ¥xp*] // Simplify;
Axn = Outer[Times, Yxn, Yxn*] // Simplify;
Ayp = Outer[Times, Yyyp, Yyp*'] // Simplify;
Ayn = Outer[Times, Yyn, Yyn*] // Simplify;
Azp = Outer[Times, Yzp, Yzp*] // Simplify;
Azn = Quter[Times, Yzn, Yzn*] // Simplify;
Tr[ox.p] // Simplify

rx
Tr[oy.p] // Simplify
ry
Tr[oz.p] // Simplify

rz

Tr[Axp.p] // Simplify

1+rx
2

Tr[Axn.p] // Simplify

1-rx
2
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Tr[Ayp.p] // Simplify
1+ry

2
Tr[Ayn.p] // Simplify
1-ry

2
Tr[Azp.p] // Simplify

1l+rz
2

Tr[Azn.p] // Simplify

1l-rz
2

18. Interpretation of the density matrix elements
What is the probability to find the qubit in the state |+ Z> when it is described by a density

matrix p?
l+r, r.—ir,
N R R R
p==(1+ro +ro, +10,)= 2 2 || P P _
2 Y ot 1-r, Pu Pxn
2 2

The projection operator:
. 1 0 A 0 0
P+:|+z><+z|:(0 OJ’ P:|—z><—z|:(0 J.

The probability to find the qubit in the state |+ z> is

~ . 1+
PJr:Tr[Per]:Tx:pu-

The probability to find the qubit in the state |— z> is
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with
P.+P =p,+py=1.
So the probability to find the qubit in a certain state is given by the diagonal elements.

19.  Bloch sphere picture
The Bloch sphere is a geometrical representation of the pure state space of a two-level quantum
mechanical system (qubit). The north and south poles of the Bloch sphere are typically chosen to

correspond to the ketvectors and |+ z> and |—Z>, respectively, which correspond. to the spin-up

and spin-down states of an electron. The points on the surface of the sphere correspond to the pure
states of the system, whereas the interior points correspond to the mixed states.

| +z2>-i| -z >

V2

| +z2>+]| -2

37



4--"&??-‘:-;"1.
L
£ 2
[ W g
= L . . = _-: 5
L L::._'i'_:‘i' ' e o = =
= —H—- o o e e
i e e 2 8 e
TR ;-r% S
= = e
e T
x = - -_F_ “!’%%‘__ : 'y Y
e B e o Ay
e =
o . e
| 1>

Bloch sphere, r| =1 and the vector r pointing from the origin to a point on the sphere.

COS—

|t//>=|+r>=cos§|+z>+ei¢sin§|—z>= y 26? )

€'’ sin—
2

r=(r.r,7), (called the -).

o l//> =sinfcosg,

X

r.=Trp6,]1=(w

r,=TrpG,]= <y/|6'y|y/> =sindsing,
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o 1//> =cosd.

z

r.=Trp6.]=(y

The density operator (pure state) is defined as

A cosz(g) %e”’ sin@
p=lw)vl=

b

Letsing  sin? (g)
2 2

where

cos’ (g) 14 sing
2 2

Letsing  sin? (g)

2 2

Pauli spin matrix representation of the density matrix is given by
5=t (+r-6)
P > .

((Example-1)) Plot the density matrix state p = %[|+ z><+ z| + |— z><— z|] in the Bloch sphere.

((Solution))
.1 1{1 0
p=gle el l-aK-h=-1, 1)
Tr(p6,)=0,
Tr(56,) =0,
Tr(ps.)=0.

The corresponding point of the Bloch sphere is the origin (0, 0, 0).

((Example-2)) Plot the density obtained by averaging
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cos? 0 le’”’ sin@
2 2

p= ,
le’”’ sinf  sin’ 0
2 2

over ¢ with a uniform probability distribution in the interval [0,27].

((Solution))

Tr(p6,)=0,
Tr(pG,) =0,
Tr(pc6.)=cosé.
Then the corresponding point of the Bloch sphere is the origin (0, 0, cosé).

((Example-3)) The average <6' : n>

We evaluate the average <6' - n> using the density operator,
(6-n)=Tr[p(6-m)]= Tr[%(i +r-6)6-n).

Noting that

(r-6)n-6)=(r-ml+ié-(rxn), (formula)
we get

<6'-n> =%Tr[6‘-n+(r -l +i6-(rxn)].
Since

Trl6 -n)=Tr(6)-n=0, Trl6 - (rx-n)]=Tr(6)-(rxn)=0,
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we have

<6'-n>=%(r-n)Tr[i]=(r-n).

((Example-4)) Pure state p = %(i +r-6)

) 1 2 A 1 2 A
=—(+r-o)=(l+r-o

pr=( )5 ( )

:%[i+r-&+r-6'+(r-6')(r-6')]

=%[i(m-r>+2(r-&>+i&-(rxr>]

=%[i(l+r-r)+2(r-6')]

Trp*] = %Tr[i(l +F-r)+2(r - 6)]

1 2
=—(1+
S+r?)
Whenr=1 Tr[p*]=1; (pure stae).
When r<1 Tr{p°]<1: (mixed state)

20.  Poincare sphere picture
Adopting a basis set {|R>,

photon of any polarization can be represented, within an overall phase by the superposition

L> }, representing right- and left-circularly polarized photons, a

o 0 . O
lw) =COSE|R> +e" sm5|L>,

where the angles € and ¢ define the point on the surface of the unit sphere (the Poincaré sphere)
whose south and north poles represent the states |L> and |R> , in analogy with |—Z> and |+ Z> in
the Bloch sphere, respectively.

B=r(x i) (=i,

The orthogonal horizontal and vertical linear polarizations are given by

41



[H) = (R)-|2)). and V)= (R)+|L).

respectively. They appear at diametrically opposite points on the equator. An incoherent
polarization state is represented by a point within the Poincare sphere. For a pure photon state, the
density operator can be expressed by

~ 1
=—(l+s-0),
p 2( )

where sx, sy and s; are called Stokes parameters.

s, =Tr[po ], s, =Trpo,], s. =Tr[p

21. Example-I: eigenvalue problem
We consider the density matrix given by

b

p:(1/4 1/4}:Z|+Z><+Z|+Z|+Z><_Z|+Z|_Z><+Z|+Z|+Z><+Z

under the basis of {|+z),

- z>}. This matrix is not diagonal. We now try to find the new basis

under which the new density of matrix is diagonal. In order to do that, we need to solve the
eigenvalue problem using the Mathematica.

The eigenvalue problem.

|V/1>:U|¢1>a |V/2>=U|¢2>7
,11:2”5 — 0.85355, |l//l>:(0.92388}
4 0.382683
242 _ _(-0.382683
Ao == =0.146447, |y/2>_( 092388 J

A 0.92388  0.382683
—0.382683 0.92388 )’
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. 0.853553 0
0

4)=Wilalv,) _{ 0 0.146447

(9]0°p0

under the basis of { | l//i> +. We have

£ =0.853553|y, ) (y, | ++0.146447 |y, )(y, | .

22. Example-II: eigenvalue problem
We consider the density matrix given by

b

p:(l/z 1/2J:§|+Z><+Z|+§|+Z><_Z|+5|—Z><+Z|+5|—Z><_Z

- z> }. This matrix is not diagonal.

under the basis of {|+z),

n

p=p. (pure state)

We now try to find the new basis under which the new density of matrix is diagonal. In order to
do that, we need to solve the eigenvalue problem using the Mathematica.

The eigenvalue problem.

A

A Jw)=0

_2),

|'r”1>:(]

11
o=|V2 V2|
11
2 2
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ﬁ|Wi> :/7“1‘|l//i>,

or

p =Py v | +wa v ) = Alw )i =[w ) [ =]+ x)(+ ],

which is the density matrix for the pure state.

23. Example-II1: | x> representation

The probability of finding the system in the quantum state represented by the state vector | )(>

(of norm unity) is
P(x)=Trp 2} x|1-

Pure state in the |x> representation.

The probability of the system at the position x:
2

P =Trp(x)(xD) = [ e (x| plx)(x|x) = (x4 x) =[(x])

We consider a system which is in either a coherent, or incoherent (mixture) superposition of two
momenta |k> and |—k>

(a) Coherent superposition
)= (k) +]-k),
V2

p=|w)y]
— LR+ R+ (k]

= LY+ Y] |- )|+ k) K]
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and
P(x) =Tr[ | x)(x|]
1
= el e) e |0)+ (xl (= e ) + (| = Kk )+ o] =)k = )1
Using the transformation function,

ikx

1
x|k)=——=¢€",
()=
we have
1 i2kx —i2kx 1
P(x)=—QQ2+e&™ +e")=—T 1+ cos(kx)].
4 2
(b) Incoherent mixture
p=

[( Kk +| =)=

P(x) =Tr[ p|x){x|]

:%Kﬂ@@hywﬂ—wﬁkwﬂ

24. Kronecker product

A classical bit of information is represented by a system that can be in either of two states, 0,
1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the
state of a two-level system, whose basic components may be written as

=10 i) =[]

This is the so-called quantum bit of information, or, in short, a qubit. Here we define the
combined state of two qubits as
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|l//l> ® | 1//2> = KroneckerProduct[y/,, ¥, ]

Then we have

1 0 0
0 1 0
0)®0)=|,]-  [0em=| . &= |
0 0 0
0
0
eli-|°|
1
1 00 O 0 0 0O
0 0 0O 01 00
0 0 0O 0 0 0O
0 0 0O 0 0 0O
0 0 0O 0 0 0O
0 0 0O 0 0 0 1

25.  Calculation of density operator by Mathematica

A classical bit of information is represented by a system that can be in either of two states, 0,
1. At the quantum mechanical level, the most natural candidate for replacing a classical bit is the
state of a two-level system, whose basic components may be written as

=)0 i) =[]

This is the so-called quantum bit of information, or, in short, a qubit.
The Kronecker product:

|l//l> ® | 1//2> = KroneckerProduct[ v/, ¥, ]
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Then we have

— o O O

0>®0>{

0)@li)-

S — O O

S o©O — O

)®[o)-

S O O

1>®I>{

S o O O

S o O O

S o O O

— o O O

[0)®[0)((0[®(0] {

N\
S o o O

S o o O

S — O O

S O O O

|0)®[1h(o[@1] {
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0 00O

0 00O
mejoplep=| 0 ¢ 00|

0 00O

0 00O

0 00O

0 0 01

((Example-1))

D =[+2)[+2),, 2)=]+2),|-2),
[3)=1=2),l+2), [4)==2)]-2),,

where the index 1, 2 denote the particle number.

(a) For the state defined by

0

1 1] 1
'/’a>—ﬁ(|2>—|3>)—ﬁ L

0

the density operator (the pure state) is given by

00 0 0

. 1o 1 -10

po=lvvil =310 _1 1 ol
00 0 0

(b) For the state defined by
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0
1|1

)= (2+=7| |

O

the density operator (the pure state) is given by

000 0
. o110
p=lvwil=510 1 1 of

000 0

26. Example
We consider the density operator (4x4 matrix) in the Hilbert space.

p =%(1—g)i4 +£(]0)®|0))((0|®(0)),

where ¢ is a real parameter (0<¢<l). We examine the property of the density operator.

s 0 0 0
4
0 1775 0 0
P= 1-¢
0 0 —_— 0
4
0 0 0 1__5
4
Thus
5 =p,
. 14367 .
Irlp~]= YRR Trp]=1
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For 0< & <1, we have
0<TrHp*]<1,

which means that the system is mixed.

27. Problems and solutions (related to the density operator)
A. Example-1

A spin-1/2 particle is in the pure state |l//> = a|+ z> +b| —z>

(a) Construct the density matrix in the S; basis for this state.
(b) Starting with your result in (a), determine the density matrix in the Sx basis where

1

=z easl=2),  |-x)=(e2)-|-2).

(c) Use your result for the density matrix in (b) to determine the probability that a measurement
of Sx yields 7/2 for the state |l//>

((Solution))

|l//> = (a} under the basis of {|+ z>, —z> }

We define the unitary operator as

+2)=0)+2),  |-x)=0

_2),

with

(a)



under the basis of { | +x> , |—x> }

(b)
p.=UpU
1 (1 1\aa" ab") 1 (1 1
zf(1 —J(a*b bb*Jf(l —J
1 (1 1 j[a(a* +b") a(a’ —b*)J
21 =1\ b(a"+b") ba" -b")
1 [(a+b)(a* +b") (a+b)d —b*)J
2\(a=-b)a +b") (a-b)a +b")

The projection operator

. 1 1 0
= = 1 =
e P LS
under the basis of { | +x>, |—x> }+. Then we have

pr

(1 ojl (a+b)a +b) (a+b)a —b")
0 0)2\(a—b)a +b) (a—b)a +b)

1 ((a +b)d +b") (a+b)(a’ —b*)J

2 0 0
and
AA 1 * *
TMEp]=(a+b)a +b)
((Mathematica))
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01
1 0);!!/Z={a, b};

Yze = {a*, b*}; pz = Outer[Times, Yz, y¥zc];

pz // MatrixForm

Clear["Global +"]; ox = (

aa* ab*

ba* bb*
1 11

U= — (1 _1);UH=Transpose[U];
V2

px =UH.pz .U // Simplify; px // MatrixForm
(a+b) (a* +b") (a+Db) (a*-b")

(a-Db) (a* +b") (a-Db) (a*-b")

N e o e
NSRS N [

Px = Outer[Times, {1, 0}, {1, 0}];
Tr[Px.px]

E (a+b) (a"+Db")
5 a a

B. Example-2
Given the density operator

p=glafalel-ala| |2l -bray-ai=3 |, )

construct the density matrix. Use the density operator formalism to calculate <S x> for this state. Is

this the density operator for a pure state? Justify your answer in two different ways.

((Solution))
.1 1 -1
P71 1)
THp 1=THp]=1, (pure state)

TS 1=-7.
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((Mathematica))

h o1
Clear["Global %"]; Sx = — ( );
2 \1 0
p:
1
— (Outer[Times, {1, 0}, {1, 0}] +
2

Outer[Times, {0, 1}, {0, 1}] -
Outer[Times, {0, 1}, {1, 0}]
Outer [Times, {1, 0}, {0, 1}])

(TR T

p.po-p // Simplify
{{0, 0}, {0, O}}

C. Example-3
Given the density operator

b

.~ 3 1
p=3fs vl 52l

construct the density matrix. Show that this is the density operator for a mixed state. Determine
(S.), <Sy> , and <SZ> for this state.

((Solution))
~_1(3°0
P 40 1)
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Tt <,

n 0 1
500 1)
2{1 0

(s.)=1r18,p1=0,

(s.)=Tr18.51=,.

((Mathematica))

(mixed state)

(0 —ij .
9 Sz:
i 0

<Sy>=Tr[$’y[)]=O,
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B B _
Clear["Global +"]; Sx = — (° 1),. Sy = - (0 -
2 \1 0 2 \i 0
a1 o0
SZ=—( );
2 \0 -1

3
p = — Outer[Times, {1, 0}, {1, 0}] +
4

1
— Outer|[Times, {0, 1}, {0, 1}]

D. Example-4
Show that

[+ e |+ =1 =2+ 2 2| 4] =221

51
=3

where
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COS— sin —
2

eA Sin— —ei cOoS—
2

((Solution))
5 =1 zZ +z —Z—Z—ll 0
B

. _l Ve _l 1 0
pn—2[|+n><+n|+| n>< n|]—2(0 J.

Then we have
/3” = /32 ’
arq 1 .
Tr(p°]= 3 (for mixed state)

((Mathematica))
Clear["Global *"];

expr * := expr /. Complex[a , b ] »» Complex[a, -b];
e e

ypn = {Cos[— ] , Exp [4 ¢] Sin[— ]}
2 2

ymn = {Sin[—Z], _Exp[i ¢] COS[Z]};

Outer[Times, ypn, zlrpn*] +

1
— Outer|Times, ymn, ymn*] // Simplify
2
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E. Example-5
Find states |l//1> and |l//1> for which the density operator

p= =

[2)r 2]+ g]-2)-2

AW

can be expressed in the form

1 1
p =5|w1><f//1 | +5|w2><w2 .

((Solution))

Assume that

4
)= d-a=| 7 |,
2

V3

V3 1 B3
)= 11-2-| 2 |
2

Then we have
.1 1 3 1
TR (2 S R e R
with

>

Tr[/f)z]=8

57
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((Mathematica))
Clear["Global *"];
expr * := expr /. Complex[a , b ] :» Complex[a, -b];

VERRE! VER!
n={—. Jhwe-{— <}
p =
—; Outer|[Times, y1, y1*] +—; Outer|Times, ¥2, ¥2*]| //
Simplify
({5 o} fo 21}
Tr[p.p]
>
8

F. Example-6
The density matrix for an ensemble of spin-1/2 particles in the S, basis is

1

A~ | — n

p=|4
n . p

(a) What value must p have? Why?
(b) What value(s) must n have for the density matrix to represent a pure state?

(©) What pure state is represented when 7 takes its maximum possible real value? Express your

answer in terms of the state |+ n> given by

0
COS—
2

sin—
2

|+n)=

€i¢

((Solution)) Here we assume that # is the complex number,

(a)
n=a-+ib,
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R 1 3
Tr[pl=p+—=1, ==,
[p]l=p 2 pP=7
(b)
A2 5 2 2
Tr(p ]=§+2(a +b°)=1. for the pure state
|n|=\/az+b2 =g.
(©)
CcOS—
|+n)= ,
e sin—
2
coszﬁ %e%in@
p=|+n){+n|= 1, . -
—e’sinéd sin” —
2
So we have

1 )
a+ib=5e’¢j sinéd .

When b =0, ¢=0. n is a real number.

1 3

a=—sinf =—,
2 4
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sinf = 73 leading to the value of fas 6 =§ or 0=—-.

Here we note that

COS

DD

, oOr cos@=—l.
2

A=

So we get

g==2
3

((Mathematica))

Clear["Global %"];
expr * := expr /. Complex[a , b ] »» Complex[a, -b];

[ 2 a+1'1b]
p = 4
a-1ib P

({5, a+ib}, (a-ib, o))

eql = Solve[Tr[p] =1, p]
3

((p-2))

p.po/.eql[[1]] // Simplify

{{%6 +a2+b2, a+ilb}, {a—ilb, T96 +a2+b2}}

eq2 =Tr[p.p] /. eql[[1l]] // Simplify

5
g+2a2+2b2
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eqg2l = eq2 /. {a2 - X - b2} // Simplify

— +2 X

Solve[eq2l =1, x]
3

(-2}

ypn = {Cos[—Z], Exp[i ¢] Sin[—Z]};
pn = Outer|Times, ypn, ypn*| // Simplify

{{cos[Z ],

N

. . 1 . ) 042
e ?sinfe]}, {2 e'®sinfe], sin[Z]"}}

G. Example-7
Show that the Curie constant for an ensemble of N spin-1 particles of mass m and charge g = -
e immersed in a uniform magnetic field B = Bk is given by

2Ny
3k,

C

b

where u = fﬂ. Compare this value of C with that for an ensemble of spin-1/2 particles,
mc

((Solution))
The magnetic moment is defined as

g S'
fi

i=-

The magnetic moment is antiparallel to the spin angular momentum. The Hamiltonian H is given
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. - B
H|l,m)= %BBOSZ 1,m)= %hm 1,m) = gy Bym|1,m) = Eym|1,m).
The energy eigenstate energy eigenvalue
l,m= 1> , Eo (the magnetic moment is antiparallel to B).
1,m=0), 0
L,m= —1> , -Eo (the magnetic moment is parallel to B)
((Solution))

Clear["Global *"];
expr * := expr /. Complex[a , b ] » Complex[a, -b];
ypl = {1, 0, 0}; y0 = {0, 1, O}; yml = {0, O, 1};

10 O
Sz=h[00 0];
0 0 -1

rulel = {Z1 -» Exp[B El] +1 + Exp[-B El], E1 - guBBO};
p =
1
— (Exp[-B E1l] Outer[Times, ypl , ypl ] +
Z1

Outer[Times, Y0 , y0 ] +
Exp[B E1] Outer[Times, yml , yml ]) //

FullSimplify
“E18 E1
e 1 e
’ OI 0 ’ OI 4 0 ’ OI OI -
1 boio g1 o 1
g uB ] ]
M=-—— N1Tr[Szp] // Simplify
h

e FLA (—l +<e2ElB) g N1 uB
z1
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Ml1=M//. rulel // Simplify

(-1+e?B09BK) gN1 1B
l+(eBOgBuB+(eZBOgBuB

X
M2 =M1 /. {BO—)gu—BB}

(-1+e”*) gN1 uB
2 X

l+e*+e

M3 = Series[M2, {x, 0, 2}] // Normal

2
— gNI1 x uB
3

M4 =M3/. {x->qguB BBO0} // Simplify

2 2 2
3BOg N1 3 uB

H. Exmple-8
An attempt to perform a Bell-state measurement on two photons produces a mixed state, one
in which the two photons are in the entangled state

X,x)+

.1,

L
V2

with probability p and with probability (1— p)/2 in each ofthe states

X, x> and

v, y> . Determine

the density matrix for this ensemble using the linear polarization states of the photons as basis
states.

((Solution))
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1
1 110
|l//1>=ﬁ[)€,x>+ yay>]_ﬁ 0 5
1
1
0
P L R A S
0

- o o O

The density operator:

. 1- -
p=plyi )+ Pl |+ P s s

I 0 0 p
1 0 0 0 O
20 0 0 0
p 0 0 1
where
rpl=1,
A 1+p°
T p*]=—L1—.
[P°] >
((Mathematica))

64



Clear["Global *"];

expr * := expr /. Complex[a , b ] »» Complex[a, -b];

1

Yyl =— {1, 0, 0, 1}; y2 ={(1, 0, O, O};
V2

d’3= {OI 0/ 0/ 1]’/

p:

l1-p

p Outer[Times, yl, yl] + Outer[Times, Y2, Yy2] +

l-p
—— Outer[Times, Y3, ¥y3] // Simplify
2

o // MatrixForm

N O O N
o O o o
o O o o

NI O oN o

I. Example-9
Show for the density operator for a mixed state

b

p=2 plyr® ) p®
k

that the probability of obtaining the state |¢> as a result of a measurement is given by 77 r[}T p o1,

where

A

By =|¢><¢|-
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((Solution))

vv
P N~
A

s

T

S

3

J. Example-10
Use the density operator formalism to show the probability that a measurement finds two spin-
1/2 particles in the state |+ x,+x> differs for the pure Bell state,

‘(D(+)> -

1
V2

[| + z,+z> + | — z,—z>] ,

for which,

D, = ‘ (D(*)><<D(*) ’

and for the mixed state
.1 1
D, = 5| +z4z)(+ z,+z|+ 5|— z—z)-z,—z|.

Thus, the disagreement between the predictions of quantum mechanics for the entangled state and
those consistent with the views of a local realist are apparent without having to resort to Bell
inequalities.

((Solution))
The Bell state ‘(D(+)> is given by
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)=

1
\/_

—_ 0 O =

and, the first density operator is

) :‘CD(*)><CD(*) —

1
2

—_— 0 O =
oS O O O
oS O O O

for the Bell state.
Tr(ﬁlz) =1

which means that p, is the density operator for the pure state.

When
1
1

|+x,4x) :%

the projection operator is given by

P =X )+ x| :%

|+, +x)

—_— e
—_— e
—_— e
—_— e

Then we have

1
Tr =—.
[ \+x+x ] 7

The probability of finding the system in the state |+ x,+x> is 1/2.
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We now consider the second density operator given by

1 1
D, = 5| +z4z)(+ z,4z|+ 5| —z,—z)(—z,—2]

0

1
2

S o O =
S O o O
S O o O

0
0
1
Since
N
Tr(p,) :5 (<D).
P, is the density operator for the mixed state. We have

n R 1
Tr[})‘+x,+x>p2] = Z :

The probability of finding this system in the state |+ x,+x> is 1/4.

((Mathematica))
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Clear["Global «"]; expr * := expr /. Complex[a , b ] » Complex[a, -b];

wxpT:«/_l? {1'1};¢xp=«/_1? (T): 6z = ()i 0zm= ()

Yyll = - (KroneckerProduct[¢zp, ¢zp] + KroneckerProduct[¢zn, ¢zn]) ;
V2
Y1l = Transpose[y11][[1]]; ¥21 = KroneckerProduct[¢xp, ¢xp]; ¥2 = Transpose[y21][[1]];
¥3pl = KroneckerProduct [¢zp, ¢zP]; y3P = Transpose[y3p1l][[1]];
¥3nl = KroneckerProduct[¢zn, ¢zn];
¥3n = Transpose [¢3nl][[1]];

Y1l // MatrixForm

Sk oo S

Y21 // MatrixForm

NSRRI TN O [
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pl = Outer[Times, y1, y1] // Simplify; pl // MatrixForm

NP O ON
o O O (@)
o O O (@)
NP O ON

H
H
Ie)
=
Ie)
=

=

PX = Outer[Times, Y2, Yy2] // Simplify;

PX // MatrixForm

[T e - W~ =
[T e - W~ =

~

[T e N - ST~ =
[T e - W~ =

Tr[PX.pl]

1
Outer[Times, ¥3p, ¥y3p] +— Outer[Times, ¥3n, ¥3n] ;
2

ko)
N
||
N R

p2 // MatrixForm

1 00 0
2
000 0
000 0
000 2
\ 2

Tr[p2.p2]

-

2

Tr[PX.p2]

-

4
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K. Example-11
Show that the equation governing time evolution of the density operator for a mixed state is

given by
i p =5, =14, 3]
L P="1p. P
((Solution))
d s d
Sh= vl
0 0
(S o+ lv S
1 = -
=—-Hy)v|-lv)v|H
1 A .
=—Hly)y|-|v)ylH
| BN |
=—Hp-pH=—-—[p,H
o PP P H]
or
L p =1, 11=111,5]
L P="1p. P

L. Example-12
(a) Show that the time evolution of the density operator is given by

pO=UM0POU (1),

where U(¢) is the time-evolution operator, namely

lw (@) =U@)|w(0)).
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(b) Suppose that an ensemble of particles is in a pure state at £ = 0. Show the ensemble cannot
evolve into a mixed state as long as time evolution is governed by the Schrodinger equation.

((Solution))
(a)

(1) =|w()Xw(t)

b

where
lw(0))=Uly(t=0)).

Then we get

p()=Uly(t=0)y(t=0)U"
=Uly(t=0)y(r=0)U"
=Up(t=0)U"

(b)

Suppose that p(z =0) is the density operator for the pure state.

TA A1) p(1)] = TrUP(t =0)U Up(t =0)U"]
=THUp(t =0)p(t = 0)U "]
=Tr{U"Up(t = 0)p(t = 0)]
=Trp(t=0)p(t =0)] =1

Thus p(¢) is still the density operator for the pure state.

26. Canonical ensemble in statistical mechanics
The time dependence of p is given by

O« an
h—p=-p,H].
ih= P [, H]

Note that the sign is opposite to that of the usual Heisenberg operator equation. We see that, if
P(H) is a function only of H , then
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[0,H]=0, —p=0,

For a canonical ensemble we may write

A

F-H 1 H
)=—exp(———),

k,T = Z ke, T

B

p = exp(

where H is the Hamiltonian and Z is the partition function. Since

Trp]=1.
Z is given by
Z =exp(— F ) =Tr[exp(— A )]
T P

The Helmholtz free energy F is given by
F=—k,TInZ.

Because of the invariance of the trace under unitary operators, we may calculate Z by taking the

A

trace of exp(— ) in any representation.

B

p= E,E,
= EZ,,“GXP(_kB_T) E, ><En
1 E
= EZ,,“GXP(_I%_T)|E"><E"
where
H|E)=E|E,),
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and

k,T~

27. Multiparticle systems

27.1 The density operator of two-particles
The density operator for two spins is given by

Pu P Pz Pu
P Prn Py Pu

b=
P P Pz P
Ps1 Px Px P
(ool (relftes) (rolp) (ol
O O O gy M g N
/M R K A
(==lpl++) {==lpl+=) -lA-+) (——A--)

The reduced density operator p, is obtained from the full density operator by tracing over the

diagonal matrix elements of particle 1

b, =Tr[p]= (pll pu) _I_(pss p34j _ (pll TP P +p34) '
P Pxn Pz P Pout Py PutPu

The reduced density operator p, is obtained from the full density operator by tracing over the

diagonal matrix elements of particle 2.

b =Tr[p]= (pll pl3) _I_(pzz p24j _ (pll TPn P +p24) '
P Ps Pr Pu Pt Py Pt Py

Note that the reduced density operator p, describes completely all the properties/outcomes of

measurements of the system 1, given that system 2 is left unobserved (“tracing out” system 2).
This represent the maximum information which is available about the particle 1 alone, irrespective
of the state of particle 2.

The reduced density operator p, describes completely all the properties/outcomes of

measurements of the system 2, given that system 1 is left unobserved (“tracing out” system 1).
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This represent the maximum information which is available about the particle 2 alone, irrespective
of the state of particle 1.

((Example-1)) Reduced density operator: Two spins (independent subsystems)
We consider the state of the composite system 1-2 consisting of independent subsystems

1 1
1) —ﬁ(|+z,1>+|—z,l>) ®|+z,2) =|+x,1) ®|+2,2) =5

S = o =

The density operator is obtained as

Pi =|W12><W12|
= (+x)® |+ z,2)(+x,1
= ( ) ® (|+z.2)(+ 2,2
=P, ® Py

®<+ z,2
)

)

+ x,l><+ x,1

where A and B denote the particle-1 and particle-2, respectively.
The matrix form of p,, is given by

P =

N | —
S = o =
© o o o
S = o =
S o o o

The reduce density operators p, and p, are obtained as

a1 O A1 O (1 0)_,
=1r = — — = = POp,
Pr= P50 01 210 o) Lo o) P®

n o5 1(1 1 +1 00 1(1 1 R
=1r = — — = — = .
Pr 2L P12 2l1 1) 2lo o o111 Py

Note that
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P, =Trpp1=Tr [y ® Pyl = psTrp4]= Pp.
P =Tr[pp]1=Trlp, ® pyl=p,Trs[Ps]= Py

((Example-2)) Two spins: independent subsystems

We start with the two-particle pure state |l//12> = |+ Z,1> + Z,2> . The density operator is

1 00O
0 0 0O
0 =+ z,1)|+ z,2)(+ z;1|(+ z,2| =
p=lezifsza)s zfrzal=| O 07
0 0 0O
The reduced density
. (10 . 0 0) (1 O
=0 o) o 0)7lo o)
. (1O . 0 0) (10
#2=0 0)"lo 0) o o)
under the basis of {|+>, —>}.
((Example-3)) Bell's two-particle entangled state
_ 1
OV He N | o .
P, ) = Tl - z2) |-z z2)1
The density operator is given by
0 0 0 O
Al O o110 1 =10
p_‘lP” ><lP“ ‘_2 0 -1 1 of
0 0 0 O
((Mathematica))
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Yl2 =

V2

(KroneckerProduct[yl, ¥2] -

KroneckerProduct[¥2, ¥1]) // Simplify
b otoy}

p0 = Y12 .Transpose[y12] // Simplify;
p0 // MatrixForm

(o (L) -

The reduced density operator

A

1

/01=§

|

0 0

0

1

0 0 0 O
1 _1

0 . 5 0
11

0 -5 5 0

0 O 0 O

Js

1

2

|

1
0

. 1(0 0} 1(1 0) 1(1 0
pr=> o =5 ;
2(0 1) 2{0 o) 2(0 1

under the basis of { |+> ,

—> }. Thus for measurements of particle 1 (or 2) the Bell's state behaves

like the mixed states of completely un-polarized ensemble.

((Note))
M.A Nielsen and I.L. Chuang, Quantum computation and quantum information, 10™ Anniversary
Edition (Cambridge, 2010).

Notice that this state p, (or p,) is a mixed state. This is a quite remarkable result. The state
of the joint system of two qubits is a pure state, that is, it is known exactly, however, the first qubit
is in a mixed state, that is a state about which we apparently do not have maximal knowledge. This
strange property, that the joint state of a system can be completely known, yet a subsystem be in
the mixed state, is another hallmark of quantum entanglement.

27.2 Density operator for three spins
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Pu P P Pu Ps P P Pis
P P Pi Pu P P Pr P
P P P P P P Py Pis
Pa Px Pz Pa Pas P Par Pig

£ Psi Ps2 Ps3 Psa Pss Pss Ps1 Pig
Ps1 Ps2 Pss Pss Pos Pss Po1 Pis
Pn Pn Pn P Pis P P P
Psi P Psz Psa Pss Pse Ps1 Pss
where
P =(+++|p[+++), P =(+++p++-),
Py ={+++p[+—1), Py =(+++p+--).

and so on. The reduced density operator p,, is obtained from the full density operator by tracing

over the diagonal matrix elements of particle 1, leading to

Py =Trp

Pu P Pu Pua Psi Psa Ps3 Psa
P Pun Prn Pu Psi Psr Pes  Pea
Ps1 Pn P P Pn Pn Prn Pn
Pa P Psz Pa Psi P2 Psz Psa

Zu X Xz X
Ao X X X
A X X X
Xao X Xz Aua

The reduced density operator p, is obtained from the full density operator by tracing over the

diagonal matrix elements of particles 1 and 2, leading to

Py =Trpy =T, ,p
=(Zn 7(12J+(Zz3 7(34)
X Xn Xz Xaa
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((Example-1)) Entangled GHS state

‘WGHZ(+)> :%[|+++> +|___>]'

The density operator is defined by

()

p= ‘V/GHZ(+)><V/GHZ

[ T s T s T e I o T e T s B
[ T s T s T e R T s T B
[ T s T s T s I s T e T s B
[ T s T s T e O s e T o B
O O O O O O O O

ST N e R s T s T - I s B s B S S
[ T s T s T e I o T e T s B
I e e s B s T o B s B B SRS

The reduced density operators are obtained as

Pr =

S O O O
S O O O
- o O O

| =
S O O =

and

T
P=50 1)

which is equivalent to a completely un-polarized state,

((Example-2)) Another entangled GHZ state
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_ L

\V/GHZ<>>—ﬁ[|+++>—|———>].

The density operator is defined by
p= ‘WGHZ(7)><V/GHZ(7) ‘

[ T e R T s I e B B S
[ T o v T e T s T s Y s S
[ T o N v T s T s T s Y s S
o T e Y i TN e TN e T e Y i S i
[ T o T v O T s T s Y s S |
[ T o v T e T s T s Y s S
[ T o N v T s T s T s Y s S
M||—1C‘.‘|DDC‘.‘IDDM“_1

I
B3 |

The reduced density operators are obtained as

Pr =

S O O O
S O O O
- o O O

| =
S O O =

and

T
P=50 1)

which is equivalent to a completely un-polarized state,

28.  Quantum teleportation
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Alice Bob

measured with |<I>12( )> R, (7)

Entanhled

|y >

EPR pair

We consider the pure particle state |w123> which is related to the quantum teleportation. The

density operator for this pure state is given by

P :|W123><

where

|1//123 ‘1// >[—a|+z> - | ]+ ‘1//(+)>[ a|+z>3+b|—z>3]

+E‘Q) >[a| z> +b|+Z 1+—= ‘q)(+)>[a(|—z>3—b|+2>3)

with
0
) = 2 -2), 22|+ 2) 1= |
\/_ 1 2 ﬁ +10
0
1
() 110
o) =t 2) 2], -2} |-20- 7|
+1
Note that



df + | =1.

The density operator o can be obtained as

0 0 0 00 0 0 0
0 ld/2  ~|d/2 0 0 (ab)2 —(ab)/2 0O
0 —la/2  Jd/2 0 0 —(ab)2 (ab)/2 0
. |0 o 0 00 0 0 0
o o 0 00 0 0 0
0 (@b)/2 -@b)yi2 0 0 /2 -pf/2 0
0 —(@h)/2 @hy/2 0 0 —p[/2  p[/2 0
0 0 0 00 0 0 0

Tracing out particle 1, the reduced density operators are obtained as

0 O 0 O 0 O 0 O
s _ 1[0 Ja —faf 0] 10 pf - 0
P57200 —lf o of 2lo -pf P} o
0 O 0 O 0 O 0 O
0 0 0 0
L]0 Jaf e o - 0
R o ¥
0 0 0 0
0 0 0 O
1j0 1 -10
"2(0 -1 1 0
0 0 0 O

Tracing over particle 2 furthermore, we have

. 1(1 0 1{0 O 11 O
Py=7 +=7 == )
210 0 210 1 20 1

which is equivalent to a completely un-polarized state. So Bob (particle 3) has no information
about the state of the particle Alice is attempting to teleport. On the other hand, if Bob waits until
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he receives the result of Alice’s Bell state measurement, Bob can then maneuver his particle into

the state |l//> that Alice’s particle was in initially.

((Mathematica))
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Clear["Global *"];
exp * := exp /. {Complex[re_, im ] »» Complex[re, -im]};

0 0

1 1
2= — ||

/2 1

0

Sl
H oo R

%
'—l
1]
—_——
1 1
oW
Y
N
1]
——
1
S
%
w
1]
—_——
p o
%
[N
1]
—_——
1
P o
N —

1 1
Y123 = — KroneckerProduct[¥l, x1] + — KroneckerProduct[¥2, x2] +

2 2
1 1
> KroneckerProduct[¢l, x3] + 2 KroneckerProduct[¢2, x4] //
Simplify;

K1l = Transpose[¥123][[1]1];
K2 = Transpose[¥123] //. {a=al, b= bl};

p = Outer[Times, K1, K2[[1]]] // FullSimplify;
p // MatrixForm

0 0 0 0 0 0 0 0
g 2al _aal 5 o abl _abl g
2 2 2 2
g —aal aal 4 5 _abl abl
2 2 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
g &b _alb 5 5 bbl _bbl
2 2 2 2
g —ab alb 45 5 _bbl Dbbl
2 2 2 2
0 0 0 0 0 0 0 0

29.  Average <)? 1>
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We consider the average value of an operator X, , that acts only on the system 1 in a global

density operator p for the particles 1 and 2;
(%) =1l(X, ® [,)p) = TH[ X T 5] = T [ X, 5],
where
A =Tnp.
If p=a, ®a,, we have
(%) =Tl(X, ®1)p)
=Tr((X, ® 1,)(& ®a,)]
= Tr((X,6, ® [,d,)]

= Tn[ X, 6,117 1,é,]
= Trl[)A(ldl]

and
P =Tnle, ®ay)=aTnla,]=q.

30.  Probability
Suppose that P is the projection operator,

then we have

1Pp1=Tre)a|p1 =2 {Bla)(a|AB) = (alpa)

B

So the probability of finding the state |a> in the system is given by the diagonal element.

31. Examples
31.1 Problem and solution -1
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Prove that the state of the form

0
C,
|w>12=CXy x>1®|y>z+cyx y>1®|x>z= C ?
rx
0
where
2 2
C,| +|C,| =1,

and both coefficients are non-zero, cannot be written as a Kronecker product state

)=l @l
with
V), = efs) a3,
URVIERVINR
((Solution))
a.p,
e =) le) = o |
a,p,

Suppose that |l//'>1 , = |l//>1 ,- Then we have

apf =0, ay,By=O, ny=ax s ny=ay,Bx.
Then we get

nyny = axlByalex = axlealey = 0 ¢
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This is not consistent with the assumption that both C,, and C|, are non-zero.

31.2 Problem and solution-2
Consider the state vector

), =%[|x>l ®|x), +|x), ®|y), +[y), ®[x), +|y), ®|»),1,

describing the polarization of two photons. Show that the reduced density operators
P =Ty, P =Tr ),

describe pure states, where
A=W ), vl

((Solution))
The density operator:

Al
e e T T )

Pi=

—_—
—_—
—_—

The reduced density operators:

o =nipal =21 ], p=mip =) ]
pl—rzplz—zlla pz—’iplz—zll-

Since

Az_lll_A Az_lll_A
p1—21 l_pl’ P> 511 l—pza

the reduced density operators p, and p, describe pure state.

33.  Schmidt decomposition
((Theorem))
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Suppose that |1//> is a pure state of a biparticle composite system, 4B. Then there exist orthonormal

states |i,) for system 4, and |i,) for system, B such that

)=l
where A =./p, is known as Schmidt coefficient and is non-negative real number satisfying
> At=1, or Zpi=1.

The states |i A> and |i B> are any fixed orthonormal bases for 4 and B (the relevant state spaces are

here of the same dimension).

The density operator is defined by

A

p=lw)wl.

Note that

Trp*1= 34"

If Tr{p°]1=1 (pure state), A =1 for one and only one i and zero for all others

We consider the simple case.

|V’> = C11|a1>|b1>+C12|a1>|b2>+C21|a2>|b1>+C22|a2>|b1> )

v)= \/;11|V1>|W1> +\/p—2|"2>|w2> -

The unitary transformation:

|vl> = U|a1> = U11|a1>+U21|a2> ,

|v2> = U|a2> = U12|a1>+U22|a2> ,
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where

5 Uy Uy Ny %
U= ) U'vU-=1.
Uy Uy

We also have

|W1> = U|b1> = V11|b1>+V21|b2>s
|W2> = U|b2> = V12|b1>+V22|b2> 5

where

<

N
<
I

ol ).
Va Vo

Then

|W>=\/;1|Vl>|wl>+\/p—2|vz>|wz>
=\/;1(U11|a1>+U21|a2>|w1>(V11|b1>+V21|b2>)
+ P2 U] @) +U | @, )V |5) + V| b, )
= (P U W+ pU V) ) b) + N p UV ++ 02UV )| )b, )
+ (P UVi 4 UV @) B) + D UnVay +4 22UniVin)| @) B,)

Then we have

G, =U11\/;1V11 +Up\ PV Cs :UH\/;IV21 +Un\ DV s
G, = U21\/;1V11 +UpA PV, Cy = U21\/;1V21 +UpnA P>V

Using the matrix form, we get
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é:(Uu qu\/?l 0 (Vu VzlJ

U, U, 0 \/p_z Vo Ty

T

:(Uu Ulzj D 0 (Vll VlzJ

Uy Un )\ 0 Jp, Vo
_gap

where d is a non-negative diagonal matrix, and V7 is the transpose matrix of V .

g=vl0}
Opz

Thus we have
EC" = (O YTAPT)
=WdvH W' dau)
_ (U+U+)
=dd"

In order to determine the values of p, and p,, we need to solve the eigenvalue problem of ccC,

if CC* is not a diagonal matrix.
Thus we can calculate the Schmidt numbers

((Example-1)) Pure state
1
|m=7?mm+mm.

We construct C and C*C.

ol 11 @é—lll
J2l0 o) 2l 1)

The eigenvlaue problem of C*C ;
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: : 1 (1
eigenvalue; p, =1, eigenket: T j,
2

: : 1 (1
eigenvalue; p, =0, eigenket: T J
2(-1

So there is only one nonzero Schmidt coefficient and thus |1//> is a product state.

((Example-2)) Entangled state
) = —{]00) +[11)].
V2
We construct C and C*C.

6_110 é+é_110
S J2lo0 1) 210 1)

The eigenvlaue problem of C*C ;

1
eigenvalue; p, =%, eigenket: (OJ’

0
eigenvalue; p, =%, eigenket: (J

So there are two nonzero Schmidt coefficients and thus |1//> is an entangled state.

((Example-3)) Entangled state
1
% Zf[|01>+|10>]'

We construct C and C*C.
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6—101 é+é_110
2l o) 210 1)

The eigenvlaue problem of C*C ;

1
eigenvalue; p, =%, eigenket: (OJ

0
eigenvalue; p, =%, eigenket: (J

So there are two nonzero Schmidt coefficients and thus |1//> is an entangled state

((Example-4))
1
=—[|00)+|01)+(11)].
lv)=—5100)+[0n+ 1)
We construct C and C*C.
~ 1 (11 en 111
C‘ﬁ(o J’ CC_3(1 2}'

The eigenvlaue problem of C*C ;

i | 0.873 igenket 0.53
eigenvalue; p, =0.873, eigenket: ,
g D g 0.85
0.85
eigenvalue; p, =0.127, eigenket: 0 53}.

So there are two nonzero Schmidt coefficients and thus |l//> is an entangled state.

((Example-5))
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)= 51100)~[01) =10} + 1)1 =170} - = o) - |1
We construct C and C*C.

é:%(—ll _11J ce =%(—11 _11j
The eigenvalue problem of C*C ;

: : 1 (1
eigenvalue; p, =1, eigenket: T J
2

: : 1 (1
eigenvalue; =0, eigenket: —| |.
g y2) g \/E J
So there are one nonzero Schmidt coefficients and thus |1//> is a product state.

((Example-6))

) =ﬁ[(l+\/g)|00>+(l—\/g)|01>+(\/§—\/§)|10>+(\/§+\/§)|11>]-

We construct C and C*C.

s 1 [ 146 1-46 a 1(2 -1
C_ﬁ(ﬁ—ﬁ \sz?} CC‘4(—1 2)

The eigenvlaue problem of C*C';

1
eigenvalue; p, =%, eigenket: L J

NEXR!

: 3 : 1 (1
eigenvalue; p, =—, eigenket: —— J
4 N2
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So there are one nonzero Schmidt coefficients and thus |1//> is an entangled state.

34.  Schmidt decomposition application
It is very easy to compute the reduced density operator given the Schmidt decomposition

v} =2 piliaia)-
The density operator is
p= Z\Ipipj|iA>|iB><jA |<]B| :
i.j

The reduced density operator is given by

Tra(P) = 2o\ pip (ki) a7

i,j.k

SWIN

Try(p) = ZW(kAiA)(jA |kA>|iB><jB|

i,j.k

=Zj:pl-|i3><i3|

We note that the spectrum (i.e., set of eigenvalues) of both reduced density operators are the same.

35.  Purification

Suppose we are given a state p, of a quantum system 4. It is possible to introduce an
additional system, which we denote R (R has the same dimension as 4) and define a pure state
|AR> for the joint system AR
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such that

Py =Try| AR)(AR|.
That is, the pure state |AR> reduces to p, when we look at system A4 alone. This is a purely
mathematical procedure, known as purification, which allows us to associate pure states with

mixed states. For this reason we call system R a reference system: it is a fictitious system, without
a direct physical significance.

((Proof))

To prove that purification can be done for any state, we explain how to construct a system R
and purification |AR> for p,. Suppose p, has orthonormal decomposition

P, = Zpi|iA><iA | : (mixed state)

To purify p,, we introduce an additional system R which has the same dimension as system 4,

with orthonormal basis states |i R> , and define a pure state for the combined system
| AR) = Z\/;i|iA>|iR> : (pure state)

We now calculate the reduced density operator for the system A corresponding to the state |AR>
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Tra( ARNARD = 32 i, Trifis a7
= ZJ? P alTr i)
-l
- %ol
3
Thus | AR) is a purification of p,.

Notice the close relationship of the Schmidt decomposition to purification: the procedure used to
purify a mixed state of system 4 is to define a pure state whose Schmidt basis for system 4 is just
the basis in which the mixed state is diagonal, with the Schmidt coefficients being the square root
of the eigenvalues of the density operator being purified.
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APPENDIX
Density operator (problem)
A spin=1/2 particle is in the pure state,

|1//> =a|+z>+b|—z>.

(a) Construct the density matrix in the S, basis for this state.
(b) Starting with your result in (a), determine the density matrix in the Sx basis, where
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1

)=l el-2l |x)=le2) |-

(c) Use your result for the density matrix in (b) to determine the probability that a measurement
of Sx yields - /2 for the state.
(d) Starting with your result in (a), determine the density matrix in the Sy basis, where

s

)=l )izl ) =gl )-d-2)

(e) Use your result for the density matrix in (b) to determine the probability that a measurement
of Sy yields +7/2 for the state for the state.

((Solution))

(a) The density matrix in the S, basis:

N AT aa” ab’ |a|2 ab’
= b = = .
P (bJ(a ) (a*b bb*j [a*b |b|2}

(b)
(+2]pl+x)= 2 (+| b))

bb"

BB+ x)

0, bbb B0 |+

(+z
~

b
:<+Z|UX+/5UX

b\ (b’

F

+2)

Then the matrix density p_ under the basis of { | + x> , | = x> } 1s obtained as
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N N |a|2 ab’ |1 (1 1
PR —has pp V2 -

_ l(l 1 J |a|2 +ab’ |a|2 —ab’
2\l —\a'b+lp[ a'b-Jpf

:l |a|2 +ab +a*b+|b|2 |a|2 —ab’ Jra*b—|b|2
2 |a|2 +ab’ —a*b—|b|2 |a|2 —ab’ —a*bJr|b|2

where |b‘> = |J_r z> ,

b)=ltz),  la)=[zx),

|+x>=U)r

oo Lt oo Lt ]
2l =1) 2l 1)

+z), |-x)=U

()
T, 1= Tr[(o 0} 1(la +ab"+a’b+p[" |of —ab”+a'b-|p ]
P 0 1)2\|d] +ab"~a'b-|p|" |af —ab”~a’b+[p]
=2 vab —ab o |af —ab" —ab+|of
—laf —ab”—ab+[pf
—(a=b)a -b)
~Ja-tf
2
((Note))

Since p is the density operator for the pure state, the probability that a measurement of Sy yields

-1/ 2 for the state for the state can be also calculated as

o -i3)

2 1 2
Pex) ==l = =la=of’.

without using the density operator.
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This method is not useful when p is the density operator for the mixed state.

(d)

BN+ )

(U, o)

"
b

b
:<+ Z|Uy+ﬁljy|+z>

(rolal+r)=2 (+y[o)e]p

b'b"

b\ b"|U |+ 2)

F

Then the matrix density p, under the basis of { | + y> , |— y>} is obtained as

. (1 =4 ab*i(l 1}

=R ) ath b N2\ —i
:l(l —z] |a|2+iab* |a|2—iab*
2\ i \ab+ip b’

:1@$+my_m%+mzpﬁ_my_m%_wj

2 |a|2 +iab” +ia*b—|b|2 |a|2 —iab" +ia'b +|b|2
where |b’> :|J_rz> , b"> :|i Z> , |a‘> :|J_ry>, a"> —|J_ry>,
[+9)=U,l+2),  [-2)=U,]-2),

vl i) NIV

(e)
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. 1 0)1 |a|2 +iab" —ia'b +|b|2 |a|2 —iab’ —ia*b—|b|2
T =T =~
o) vla,] r[(o 0} 2[|a|2 viab' +ia'b—|p[ |a —iab" +ia'b+|b[
:1ﬂ{pr+my_m%+mzpﬁ_my_m%_mj
2 0 0

— Ml +iab” ~ia’b+ ']
= %(a —ib)(a" +ib")
~La—af

2

((Note))
Since p is the density operator for the pure state, the probability that a measurement of Sy yields

+7/2 for the state for the state can be also calculated as

P =feslvf =30 ~if;)

2
’

=lp—m
2

without using the density operator.
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