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I. Formulation of susceptibility in quantum mechanics 

The partition function is given by 

 

][ ĤeTrZ   

 

We note that 
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where Ĥ  is the spin Hamiltonian and is defined by 
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M̂  is the operator of magnetic moment. The average magnetization is given by 
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We also have  
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The fluctuation of magnetization is 
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The susceptibility is related to  2M  by 
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When 0ˆ M , we get 
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leading to 
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2. Quantum mechanics: General formula for Magnetic susceptibility of angular 

momentum j 



We consider the magnetic susceptibility for the angular momentum j, where mj,  is the 

eigenstate of the angular momentum Ĵ  with m=-j, -j+1,…, j-1, and j. 
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where zĴ  is the angular momentum Ĵ  (dimensionless) and the magnetic moment is given by 
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Note that 
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The one-partition function can be evaluated as 
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where we use the variable x as 

 

Bjgx BJ  . 

 

The partition function is obtained as 
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The average magnetization is obtained as 

 

x

Z
jNg

x

Z

B

x
N

B

Z
NM C

BJ
CC















 111 lnln1ln1ˆ 


 

 

Note that 
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Then we have 
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where )(xB j  is the Brillouin function 

 

)
2

coth(
2

1
)

2
cot(

2

)12(
)(

j

x

jj

x
x

j

j
xB j 


  

 

with 

 

)sinh(

1
)(csch 

x
x   

 

In the limit of 0B , we expand M̂  in a power of x as 
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The magnetic susceptibility is 
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We use the Brillouin function 
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In the limit of j , )(xB j  becomes the Langevin function. 
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Fig. Brillouin function )(xB j  as a function of x. j = 1/2, 1, 3/2, and 2. The Langevin function 

corresponds to )(xB j  with j =  . 

 

3. Classical theory for paramagnetic system 
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We discuss the magnetic susceptibility of paramagnet in the classical theory. The system can 

be regarded as a collection of N fixed magnetic moments with μ . The direction of the magnetic 

moments are randomly distributed. When the magnetic field is applied along the z direction, the 

Zeeman energy of each magnetic moment is given by 
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where  is the angle between the magnetic moment () and the magnetic field (z axis). Then the 

one-particle partition function for one magnetic moments is given by 
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The partition function for N magnetic moments is 
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The average magnetization is 
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We use  Bx   
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where )(xL  is the Langevin function 
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Fig. Langevin function )(xL . 

 

In the small limit of x,  
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The magnetic susceptibility is 
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The significant difference between the quantum and the classical model was that, in the classical 

system, the range of possible energy configurations was infinite while, in the quantum case, the 

range was discrete and finite. 

 

4. Comparison between the Brillouin function and Langevin function 

We note that the Brillouin function for j  becomes the Langevin function. In the 

Brillouin function 

 

x
B

kB T

L x

y x 3

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0



)
2

coth(
2

1
)

2

12
coth(

2

12
)(

j

x

j
x

j

j

j

j
xB j 


  

 

the first term tends to )coth(x  in the limit of j . The second term tends to 
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where 
j2

1
  ( 0  as )j . Thus we get the Langevin function. 
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5. Magnetic susceptibility with S = 1/2 

We consider a paramagnetic crystal, with non-interacting magnetic ions at S = 1/2. Evaluate 

the fluctuation  2M  of the magnetization and show that it is related to the susceptibility  

 

B

M






ˆ

  

 

by the relation 
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  (particular case of the fluctuation dissipation theorem). 

 

((Solution)) 
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The on-particle partition function 
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The density operator  
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The magnetization 
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In the small limit of, 1
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The susceptibility is 
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6. Magnetic susceptibility with spin S=1 

((Mathematica)) We calculate the magnetic susceptibility of spin S = 1,using the density matrix. 
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The on-particle partition function 
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The density operator  
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The susceptibility is 
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In the limit of 0B , we have 
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7. Summary for the magnetic susceptibility with spin S 

For spin S, the susceptibility is given by 
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Using the relation 
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where g = 2. 

Clear "Global` " ; M1 g B
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For S =1, we have 
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For S =1/2, we have 
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8. p.163 Rigamonti example 

Problem F.IV.9 

A. Rigamonti and P. Carretta, Structure of Matter, An Introductory Course with Problems and 

Solutions (Springer, 2007). 

 

Consider an ensemble of N/2 pairs of atoms at S = 1/2 interacting through a Heisenberg-like 

coupling 11
ˆˆ  SS K  with K>0. By neglecting the interactions among different pairs, derive the 

magnetic susceptibility. Express the density matrix and the operator zŜ  on the basis of the singlet 

and triplet states. 

 

((Solution)) 
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The density operator: 
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where Z is the partition function 
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The susceptibility is given by 
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For N/2 pairs, the total susceptibility is 
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((Mathematica)) 
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((Another method)) 

Clear "Global` " ;

rule1 a
K 2

4
;

z PauliMatrix 3 ;

I2 IdentityMatrix 2 ;

H0 a

1 0 0 0

0 1 2 0

0 2 1 0

0 0 0 1

;

s1
2
KroneckerProduct z, I2 ;

s2
2
KroneckerProduct I2, z ;

M1
2 B

s1 s2 Simplify;

Z0 Tr MatrixExp H0 ;

0
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MatrixExp H0 FullSimplify;

Xav Tr M1.M1. 0 . rule1 . K Simplify
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(a) Energy eigenvalue: 
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(b) Energy eigenvalue: 
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For S = 1, the susceptibility is given by 
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For S = 0, 00 . The probability for the system in the triplet state is 

 





ℏ

ℏ








e

e
P

31

3
1  

 

The probability for the system in the singlet state is 
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Then the total susceptibility is 
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where ℏ  is the energy difference between the triplet state and the singlet state. 

 


