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I. Formulation of susceptibility in quantum mechanics

The partition function is given by
Z =Trle™]
We note that
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where H is the spin Hamiltonian and is defined by

M s the operator of magnetic moment. The average magnetization is given by
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We also have



The fluctuation of magnetization is
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The susceptibility is related to (AM )2 by
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2. Quantum mechanics: General formula for Magnetic susceptibility of angular

momentum j



We consider the magnetic susceptibility for the angular momentum j, where

j,m> is the

eigenstate of the angular momentum J with m=- , -j+1,...,j-1, and j.
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Z=Trle™].
with
H= _(_gJ/quz)B = gJ/quzB

where J _ 1s the angular momentum J (dimensionless) and the magnetic moment is given by
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Note that
J|jomy=m|jm)y. | jm)=j(G+1)|j,m).

The one-partition function can be evaluated as



where we use the variable x as
x=pg,juB .

The partition function is obtained as
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The average magnetization is obtained as
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Then we have

(M) = Ng, ju, B, (x)



where B, (x) is the Brillouin function

(2j+1) x, b X
B (x)=—"7+ 2 cot(x+2j) 2jC0th(2j)

with
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In the limit of B — 0, we expand <M> in a power of x as
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The magnetic susceptibility is
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where
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We use the Brillouin function
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In the limit of j — o0, B;(x) becomes the Langevin function.
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Fig.  Brillouin function B,(x) as a function of x. j = 1/2, 1, 3/2, and 2. The Langevin function

corresponds to B, (x) withj = .

3. Classical theory for paramagnetic system



We discuss the magnetic susceptibility of paramagnet in the classical theory. The system can

be regarded as a collection of N fixed magnetic moments with # . The direction of the magnetic

moments are randomly distributed. When the magnetic field is applied along the z direction, the

Zeeman energy of each magnetic moment is given by

H=-u-B=—-uBcosl
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where @ is the angle between the magnetic moment (x) and the magnetic field (z axis). Then the

one-particle partition function for one magnetic moments is given by



Z. = .[dQ exp(—puB cos )
= .[272 sin 8d @ exp(—fuB cos )
0

. sinh(SuB)
PuB

The partition function for N magnetic moments is
Loy = (Za)N
The average magnetization is
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where L(x) is the Langevin function
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Fig. Langevin function L(x).

In the small limit of x,
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The significant difference between the quantum and the classical model was that, in the classical
system, the range of possible energy configurations was infinite while, in the quantum case, the
range was discrete and finite.

4. Comparison between the Brillouin function and Langevin function
We note that the Brillouin function for j— oo becomes the Langevin function. In the

Brillouin function
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the first term tends to coth(x) in the limit of j — co. The second term tends to
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where € = 57 (e >0 as j — ). Thus we get the Langevin function.
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5. Magnetic susceptibility with S = 1/2

We consider a paramagnetic crystal, with non-interacting magnetic ions at S = 1/2. Evaluate

the fluctuation (AM )2 of the magnetization and show that it is related to the susceptibility
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by the relation y = T (particular case of the fluctuation dissipation theorem).
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((Solution))
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where




The on-particle partition function

Lo = Tr[eiﬁg] = <+|efﬁﬁ|+> + <—|eiﬁﬁ|—>
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The density operator
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In the small limit of, &;B <<1
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The susceptibility is
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6. Magnetic susceptibility with spin S=1

((Mathematica)) We calculate the magnetic susceptibility of spin S = 1,using the density matrix.

H=-M-B=-M_2B

where

1 0 0
Mz:_gl;llBs\'z:_gﬂB 0 0 0
0 0 -1

The on-particle partition function



Ze = T’”[eiﬁg]

The density operator

The susceptibility is

~ (1+e2ﬁgﬂ33) ,
Z = IBTF[MI p] = 1+eﬁgﬂ83 +e2ﬁgﬂ33 /Bg :uB

In the limit of B — 0, we have
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Clear["Global‘*"];M1=—guB{O 0 0 ];
0 0 -1

Hl=-M1B; Z=Tr[MatrixExp[-B H1]];

1
ol Z MatrixExp[-f8 H1];

x1=BTr[M1.Ml.p1l] // Simplify
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75 Summary for the magnetic susceptibility with spin S

For spin S, the susceptibility is given by
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Using the relation

(AM) — gZILlB S(S+1)
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where g = 2.



For §=1, we have

For §=1/2, we have
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8. p-163 Rigamonti example

Problem F.IV.9
A. Rigamonti and P. Carretta, Structure of Matter, An Introductory Course with Problems and
Solutions (Springer, 2007).

Consider an ensemble of N/2 pairs of atoms at § = 1/2 interacting through a Heisenberg-like
coupling K 3‘1 -3‘1 with K>0. By neglecting the interactions among different pairs, derive the

magnetic susceptibility. Express the density matrix and the operator §Z on the basis of the singlet

and triplet states.

((Solution))

"z 2 oz oz Az Az
M7 =— :B(Sl +8,7) =—11,(67 +67)



—2u, 0 0
M > ®1,+1, ® 67) 000
— = — + =
Uy (0 » 71, WO, 0 0 0
0 00
where
1 0 0 O
R 1 0 1 0 01 0 O
Slz®12=ﬁ =E
2{0 -1 0 1 20 0 -1 O
0 0 0 -1
1 0 0 O
R 1 0 1 0 0O -1 0 O
11®SZZ:E ® :E
2{0 1 0O -1/ 20 0 1 O
0O 0 0 -1

The density operator:
= exp(~H)
P 7 p
where Z is the partition function

2 = Trexp(- D) =3exp(- L1+ exp AT

The susceptibility is given by
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For N/2 pairs, the total susceptibility is
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((Mathematica))
Clear["Global *"];
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rulel = {a -

oz = PauliMatrix[3];

I2 = IdentityMatrix([2];
1 0 0 O
HO = 0 -1 2 0.
“%lo 2 -10]|’
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h
sl = > KroneckerProduct|[oz, I2];

A
s2 = > KroneckerProduct[I2, oz];
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M1 = (sl +s2) // Simplify;

Z0 = Tr[MatrixExp[-8 HO]];

1
o0 = 70 MatrixExp[- HO] // FullSimplify;

Xav = B Tr[M1.M1.p0] /. rulel /. {K—) %} // Simplify
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((Another method))
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(a) Energy eigenvalue: 1 _ho

4
|l>:|++>’ |2>:%(|+—>+|—+>), |3>=|——> (S =1 triplet state)
2
(b) Energy eigenvalue: — 3Kh = _3hTa)
|4) = %(I +-)=|-+) (S =0, singlet state)

For § =1, the susceptibility is given by
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For S=0, y,=0. The probability for the system in the triplet state is
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The probability for the system in the singlet state is

_ 1
O 1437

Then the total susceptibility is
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where hw is the energy difference between the triplet state and the singlet state.



