Density of states for one-particle system
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: August 23, 2018).

1. Energy level in 3D system

We consider the Schrödinger equation of a spin-less particle, which is confined to a cube of edge L.

$$
\begin{equation*}
H \psi_{k}=\frac{\boldsymbol{p}^{2}}{2 m} \psi_{k}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi_{k}=\varepsilon_{k} \psi_{k} \tag{1}
\end{equation*}
$$

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

$$
\begin{aligned}
& \psi_{\mathbf{k}}(x+L, y, z)=\psi_{\mathbf{k}}(x, y, z), \\
& \psi_{\mathbf{k}}(x, y+L, z)=\psi_{\mathbf{k}}(x, y, z), \\
& \psi_{\mathbf{k}}(x, y, z+L)=\psi_{\mathbf{k}}(x, y, z)
\end{aligned}
$$

The wavefunctions are of the form of a traveling plane wave.

$$
\begin{equation*}
\psi_{k}(\boldsymbol{r})=e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& k_{\mathrm{x}}=(2 \pi / L) n_{\mathrm{x}},\left(n_{\mathrm{x}}=0, \pm 1, \pm 2, \pm 3, \ldots .\right), \\
& k_{\mathrm{y}}=(2 \pi / L) n_{\mathrm{y}},\left(n_{\mathrm{y}}=0, \pm 1, \pm 2, \pm 3, \ldots \cdot\right), \\
& k_{\mathrm{z}}=(2 \pi / L) n_{\mathrm{z}},\left(n_{\mathrm{z}}=0, \pm 1, \pm 2, \pm 3, \ldots \ldots\right) .
\end{aligned}
$$

The components of the wavevector \boldsymbol{k} are the quantum numbers. The energy eigenvalue is given by

$$
\begin{equation*}
\varepsilon(\boldsymbol{k})=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=\frac{\hbar^{2}}{2 m} \boldsymbol{k}^{2} . \tag{3}
\end{equation*}
$$

Here

$$
\begin{equation*}
\boldsymbol{p} \psi_{k}(\boldsymbol{r})=\frac{\hbar}{i} \nabla_{k} \psi_{k}(\boldsymbol{r})=\hbar \boldsymbol{k} \psi_{k}(\boldsymbol{r}) \tag{4}
\end{equation*}
$$

So that the plane wave function $\psi_{\boldsymbol{k}}(\boldsymbol{r})$ is an eigenfunction of \boldsymbol{p} with the eigenvalue $\hbar \mathbf{k}$. The ground state of a system of N electrons, the occupied orbitals are represented as a point inside a sphere in \boldsymbol{k}-space.

2. Density of states

Fig. Density of states in the 3D \boldsymbol{k}-space. There is one state per $(2 \pi / L)^{3}$. Each state is denoted by red points.

There is one state per volume of \boldsymbol{k}-space $(2 \pi / L)^{3}$. We consider the number of one-particle levels in the energy range from ε to $\varepsilon+\mathrm{d} \varepsilon, D(\varepsilon) \mathrm{d} \varepsilon$

$$
\begin{equation*}
D(\varepsilon) d \varepsilon=\frac{L^{3}}{(2 \pi)^{3}} 4 \pi k^{2} d k=\frac{V}{(2 \pi)^{3}} 4 \pi k^{2} d k, \tag{5}
\end{equation*}
$$

where $V=L^{3}$, and $D(\varepsilon)$ is called a density of states. Since $k=\left(2 m / \hbar^{2}\right)^{1 / 2} \sqrt{\varepsilon}$, we have

$$
d k=\left(2 m / \hbar^{2}\right)^{1 / 2} d \varepsilon /(2 \sqrt{\varepsilon}) .
$$

Then we get the density of states

$$
\begin{equation*}
D(\varepsilon)=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{\varepsilon}=\frac{2 \pi(2 m)^{3 / 2}}{h^{3}} V \varepsilon^{1 / 2} \tag{6}
\end{equation*}
$$

The number of states for the energy $(0-\varepsilon)$

$$
\begin{equation*}
N(\varepsilon)=\int_{0}^{\varepsilon} D(\varepsilon) d \varepsilon=\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\varepsilon_{F}} \sqrt{\varepsilon} d \varepsilon=\frac{V}{6 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{3 / 2} \tag{7}
\end{equation*}
$$

