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Lev Davidovich Landau (January 22, 1908 - 1 April 1968) was a Soviet physicist who made 

fundamental contributions to many areas of theoretical physics. His accomplishments include the 

independent co-discovery of the density matrix method in quantum mechanics (alongside John 

von Neumann), the quantum mechanical theory of diamagnetism, the theory of superfluidity, the 

theory of second-order phase transitions, the Ginzburg–Landau theory of superconductivity, the 

theory of Fermi liquid, the explanation of Landau damping in plasma physics, the Landau pole in 

quantum electrodynamics, the two-component theory of neutrinos, and Landau's equations for S 

matrix singularities. He received the 1962 Nobel Prize in Physics for his development of a 

mathematical theory of superfluidity that accounts for the properties of liquid helium II at a 

temperature below 2.17K.  
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The theory of phase transitions of second order is based on the thermodynamic properties of 

the system for given deviations from the symmetrical state. Landau introduced the concept of the 

order parameter. The thermodynamic properties can be expressed in terms of the order parameter 

 . 



 
 

Fig. (a) Mean-field susceptibility, (b) specific heat, (c) correlation length, and (d) order 

parameter as a function of temperature. The mean field exponent; 0' . 
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We consider the Helmholtz free energy; ),( VTFF  . 

 

STUF   

 

is a minimum in equilibrium. This free energy is a minimum with respect to an order parameter 

 . 



 

((Example)) 

 

  Magnetization, dielectric polarization, fraction of superconducting electrons in a 

superconductor, etc. 

 

In thermal equilibrium,   will have a certain value )(0 T  . In the Landau theory, we imagine 

that   can be independently specified. We consider the Landau-free energy function 

 

),(),(),( TTSTUTFL    

 

where 

 

),(),()( 0 TFTFTF LLL    

 

if 0  . 

 

),( TFL   is an even function of  , in the absence of applied fields. 

 



 
 

Fig. Plot of the free energy as a function of the order parameter    

 

((Assumption)) 

 

)(LF  is an even function of   in the absence of applied fields. 
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For simplicity, 
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const)(4 Tg >0,  0)(6 Tg . 

 

Then we have 
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with 

 

0a   and  04 g  

 

where   is the critical exponent of magnetization. 

 

(i) The root 0  corresponds to the minimum of FL at T above Tc. 

 

)()( 0 TgTFL  . 

 

(ii) The other root )(
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2. Susceptibility 

We consider the case when an external magnetic field is present. 
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in the presence of external field B. 
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Taking derivative of 




 ),( TFL  with respect to B; 
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The susceptibility is given by 
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where   is the critical exponent of the susceptibility. 

 

For cTT   

 

2/1

2/1

4

)( TT
g

a
c 








 . (

2

1
 ) 

 

)(2

1

)(3)(

1

TTaTTaTTa ccc 



  ( )1'  



 

 

 

 
 

Fig. The order parameter ( )0(/)( 0 t  as a function of reduced temperature, cTTt / . 
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Fig. The reduced susceptibility caT  as a function of reduced temperature, cTTt / . 

t T Tc

t 0

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.2

0.4

0.6

0.8

1.0

1.2

t T Tc

aTc t

0.8 1.0 1.2 1.4

5

10

15

20

25



 

3. Entropy and heat capacity 

 

The entropy S is given by 
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So that there is no latent heat at the transition temperature T0. Such a transition is called a second 

order phase transition. 

We can evaluate the heat capacity 
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of the two phases for cTT   and cTT  . 
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At cTT  , the heat capacity is discontinuous (second order phase transition). 
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Fig. Schematic plot of the heat capacity as a function of temperature. 
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At cT T , we have 

 

3

4g B   or 

1/3

4

B

g


 
  
 

 

 



So we have the critical exponent 3.   

 

5. Correlation length 

Suppose that the order parameter is not homogenous in space. We add a term proportional to 

 2 . The free energy is modified as 

 

24

4

2

0

2

)(
4

1
)(

2

1
)(

)(),(),,(









BgTTaTg

TFTF

c

Lr

 

 

where H is dependent on the space. We assume the functional Hamiltonian )(K  which is defined 

by 
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To evaluate a derivative of the functional, we introduce 
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where )(r  is a small perturbation. We expand )(  K  as 
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and keep only up to linear terms. Then we obtain 
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Taking the integral (the last term) by part, requiring that 0  at the surface and minimizing the 

total free energy 
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leading to the equation for   
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((Note)) 
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Thus we get 
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((Green function method)) 

We solve the differential equation  
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using the Green function method. Suppose that   0 , where   is the deviation of from each 

equilibrium value 0 . 
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where 0  depends on T, 
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(a) For cTT   
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Here we define the Green function such that 
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  is the inverse correlation length and   is the correlation length 
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(The critical exponent for the correlation, 
2

1
' ). 

 

 
 

Fig. The reduced correlation length )(/ taTc   as a function of reduced temperature, 

cTTt / . 

 

The solution of 
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When )'(rB  is a highly localized magnetic field at the origin, 
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we have 
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In general, )(r  has the form of  

 

 
2

1
)(

d
r

r  

 

Note that 1  and 
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 . Using the scaling relation   )2( , we have 

 

0   (critical exponent) 

 

where  is the critical exponent for the pair correlation function. Then we have 12  d  and 
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for d = 3, which is in agreement from the prediction from the mean field theory. 

 

6. Fluctuation 

We define the partition function as 
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The fluctuation is given by 
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The susceptibility  is defined by 
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7. Spin correlation 

We now consider the system of spin 1/2 magnetic atoms. Each atom has magnetic moment 

iB  ( 1i ). The magnetization is given by 
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The fluctuation of M is obtained as 
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where   ji ((  is a spin correlation function. Since   
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susceptibility is related to the spin correlation function as 
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8. Universality and critical exponents 

Critical exponents describe the behavior of physical quantities near continuous phase 

transitions. They are universal, i.e. they do not depend on the details of the physical system, but 

only on (i) • the dimension of the system, (ii) the degree of freedom such as Ising (n = 1), XY (n 

= 2) and Heisenberg (n = 3) (for spin system), and (iii) the range of the interaction.  

 

 
 

Fig. Universality class of the critical behavior, which depends on the dimension (d) and the 

number of freedom (n). The Onsager point(d = 2, n = 1). The Kosterlitz-Thouless (KT 

point) (d = 2, n = 2). The liquid 4He point (d = 3, n = 2). 

M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974). 

 

 

Magnetizion: 
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Susceptibility: 

 
  )( cTT   ( cTT  ) 

 
')(   TTc   ( cTT  ) 

 

Heat capacity: 

 
 )( cTTC   ( cTT  ) 

 
')(  TTC c   ( cTT  ) 

 

Correlation length: 

 
  )( cTT   ( cTT  ) 

 
')(   TTc   ( cTT  ) 

 

Critical isotherm: 

 
/1

HM    ( cTT  ) 

 

((Note)) Mean field critical exponent 

 

0' , 
2

1
 ,  1'  , 3  

 

0 ,  
2

1
  

 

9. Scaling relation 

There are the following scaling relations for critical exponents. 

 

22     (Rushbrooke identity) 
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2)1(     (Griffiths identity) 
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where d is the dimension of the system.  

 

10. Universality class 

http://www.sklogwiki.org/SklogWiki/index.php/Universality_classes 

 

 
 



 
 

Fig. Diagram of the (d, n) plane showing contours of constant . There is a region where 

2/1 , and a nonphysical region of negative . 

M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974). 

 
 



 
 

Fig. Diagram showing contours of constant exponent a in the (d, n) plane. The dash-dot 

contours indicate negative a; the solid contours are for 0 . 

M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974). 

 

11. Example of the first order phase transition Huang 19-3 

The nematic liquid crystal used in display can be described by an order 

parameter S corresponding to the degree of alignment of molecular directions. In 



the ordinary fluid phase )0( S . The transition between the ordinary fluid phase 

and a nematic phase can be modeled via the mean-field Landau free energy 

 

432)( cSbSatSSE  , 

 

where 0TTt  , and a, b, c are positive constants. The third-coefficient b is usually 

small. 

 

(a) Sketch )(SE  for range of T, from 0TT  , through 0TT   to 

0TT   Comment on the value of S at the minimum of )(SE  at 

each value of T considered. 

(b) What are the conditions for )(SE  to be minimum? 

(c) Find the transition temperarure Tc. (It is not T0) 

(d) Is there a latent heat associated with the phase transition? If so, 

what is it? 

(e) How does the order parameter vary below Tc? 

 

((Solution)) 
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where a>0, b>0, c>0. 

 

 

We make a plot of the free energy E(S) with a = 2, b = 0.8, and c = 0.2 
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For t<0, 

 



 E(S) has two local minimum at S =  (<0) and S =  (>0). 
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Fig. t = -1.9 (red). 

 

 

_____________________________________________________________________________ 

 

10 8 6 4 2 2 4

100

80

60

40

20



When t = 0, there is one local minimum at 
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Fig. t = 0.38 (red), 0.39, 0.40 (green), 0.41, and 0.42 (purple). The green line at 
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Note that S is no an entropy. The entropy change: 
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The latent heat: 

 
22

0
2

)
4

(
~









c

b
a

ac

b
TSTL  

 

_____________________________________________________________________________ 

For 
ac

b
t

ac

b

8

9

4

22

  

 

 
 

Fig. t = 0.44 (red), 0.46, 0.48 (green), 0.50, and 0.52 (purple), 0.54 
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Fig. t = 0.6 (red), 0.7, 0.8 (green), 0.9, and 1 (purple). 

 

What happens to the order parameter well below Tc?  

 

 
 

Fig. t = -1 (red), -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1. 
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APPENDIX-I  The first and second phase transitions 
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APPENDIX II Magnetic phase transitions. Typical experimental results 

[U. Köbler and A. Hoser, Renormalization Group Theory, Impact on Experimental Magnetism 

(Springer, 2010).] 

 

(1) Specific heat of 4He adsorbed on grafoil at critical coverage for 33  epitaxial structure. 



 
 

(2) Specific heat of GdZn 



 
 

(3) Sublattice magnetization of K2NiF4 



 

 

Fig. Neutron scattering intensity at the (1, 0, 0) peak of K2NiF4  as a function of temperature 

(Birgeneau et al. 1970). 

 

(4) Sublattice magnetization of CrF2 



 
 

(5) Sublattice magnetization and staggered suceptibility of USb 



 
 

(6) Sublattice magnetization of NiF2 



 
 

(7) UO2 



 
 

(8) NiCo3 



 
 

(9) NiO powder 



 
 

 

(10) LuFeO3 



 
 

(11) CrF2 



 
 

 

APPENDIX-III  Phase transition 

 

L.J. de Jongh and A.R. Miedema, Advances in Physics, 50, 947 (2001). Experiments on simple 

magnetic model systems 

 



 

 
 

APPENDIX-II  Railroad track analogy of renormalization group 
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Mean field theory 

 

For spin 1/2 system, 
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The critical temperature is defined by 
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We note that the critical temperature cT  is expressed by 
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Spin Hamiltonian: 
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