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Lev Davidovich Landau (January 22, 1908 - 1 April 1968) was a Soviet physicist who made
fundamental contributions to many areas of theoretical physics. His accomplishments include the
independent co-discovery of the density matrix method in quantum mechanics (alongside John
von Neumann), the quantum mechanical theory of diamagnetism, the theory of superfluidity, the
theory of second-order phase transitions, the Ginzburg—Landau theory of superconductivity, the
theory of Fermi liquid, the explanation of Landau damping in plasma physics, the Landau pole in
quantum electrodynamics, the two-component theory of neutrinos, and Landau's equations for S
matrix singularities. He received the 1962 Nobel Prize in Physics for his development of a
mathematical theory of superfluidity that accounts for the properties of liquid helium II at a
temperature below 2.17K.

https://en.wikipedia.org/wiki/Lev_Landau

The theory of phase transitions of second order is based on the thermodynamic properties of
the system for given deviations from the symmetrical state. Landau introduced the concept of the
order parameter. The thermodynamic properties can be expressed in terms of the order parameter
o.
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parameter as a function of temperature. The mean field exponent; a=a'=0. g 5

y=y'=1.0=3.7=0. V=l.
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We consider the Helmholtz free energy; F = F(T,V).
F=U-ST

is a minimum in equilibrium. This free energy is a minimum with respect to an order parameter
o.



((Example))

o Magnetization, dielectric polarization, fraction of superconducting electrons in a
superconductor, etc.

In thermal equilibrium, o will have a certain value o = o (T). In the Landau theory, we imagine

that o can be independently specified. We consider the Landau-free energy function
F,(0,T)=U(o,T)-TS(0,T)
where

F,(T)=F (0,,T)<F,(0,T)

if o #0,.

F,(o0,T) is an even function of o, in the absence of applied fields.



Fig.  Plot of the free energy as a function of the order parameter ¥ = o
((Assumption))

F, (o) is an even function of o in the absence of applied fields.
1 , 1 4
F, (o,T)= go(T)"‘Egz(T)O' +Zg4(T)O' +...

For simplicity,
& (T =a(T -T,)
g,(T) =const>0, g.(T)=0.

Then we have



F,(0,T)=g,(T)+ %a(T ~-T)o’ + % g0

and

oF,
(o2

=a(T-T)o+g,0° =0

which has the roots

o=0
and
o’ =2(T,-T)
4
or
1/2 1
a
g:(_j (TC_T)I/Z (ﬁ:_)
4 2
with
a>0 and g,>0
where £ is the critical exponent of magnetization.
(1) The root o =0 corresponds to the minimum of F1. at 7 above Te.

F.(T)=g,T).

i The other root o = 4 T. —T) corresponds to the minimum of F, at 7 above T.
¢ P L

&4

F,(T)=g,(T) - (T -T.)*.

84



2. Susceptibility
We consider the case when an external magnetic field is present.

F,(0,T)=g,(T) +%a(T ~-T)o’ +%g404 ~-Bo

in the presence of external field B.

Mza(T—Tc)a+g4a3—B=0

a(T-T)o+g,0’ =B

oF, (c,T)

Taking derivative of —*~

with respect to B;
oo

oo
T-T)+3¢,0°]—=1
[a( ) t3g,0 ]aB

The susceptibility is given by

_0o _ !
OB a(T-T)+3g,0°

X

ForT>T, o=0

oo 1
= = = 1
=g T-T) (r=D
where y is the critical exponent of the susceptibility.
For T <T,
1/2 1
a
g:(_j (TC_T)I/Z, (ﬂ:_)
84 2
1 1
7= (7'=1D

T a(T-T)+3a(l,-T) 2a(T,~T)
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3. Entropy and heat capacity

The entropy S is given by

S (T T>T
S:— =
oT
a’ (T<T)
Sy(T)+—(T-T,)
&4
where
S:_(G_Fj
oT
:_M_a(yﬂ_yﬂc)aa_a_laaz
oT oT 2

oo 1
=S, (1) -a(T-T)o -2 ——ac’
o(I)—a( C)UGT 2aa

with

So(T) =- a—ga();T)

So that there is no latent heat at the transition temperature 7o. Such a transition is called a second
order phase transition.
We can evaluate the heat capacity

e
or ),

of the two phases for 7 >7 and T <T,.



dT (Tr>T)
C, =
2 T<T
245, @ (T<T)
&4

At T =T, the heat capacity is discontinuous (second order phase transition).

2
AC, = Tca— (Discontinuity of C, at T' =T, .

&4

%

Fig.  Schematic plot of the heat capacity as a function of temperature.

4 MzBl/ﬁ
At T =T, , we have

B 1/3
g,0° =B or o {—j
&4



So we have the critical exponent ¢ = 3.

5. Correlation length
Suppose that the order parameter is not homogenous in space. We add a term proportional to

(V 0)2. The free energy is modified as

F(o,T,r)=F,(0,T)+a(Vo)

= gO(T)+%a(T ~-T)o’ +%g404 —Bo+a(Vo)?

where H is dependent on the space. We assume the functional Hamiltonian K (o) which is defined
by

1 1 1
K(o)=\|dr[=a(T -T)o* +—g,0' —Bo+—a(Vo)’
(0)=] [UT-T)o" +- 80" ~Bo+_a(Vo)']
To evaluate a derivative of the functional, we introduce
0K =K(oc+0d0)—K(o)

where oo (r) is a small perturbation. We expand K (o + do) as

K(o+0d0) = Id%’{%a(T ~T)(o +d0) +%g4(0 +00)" — B(o + 60) +%a[V(G +00)*}
and keep only up to linear terms. Then we obtain

K =K(oc+00)—K(o)= '[a”r[a(T ~T)odc + g,0°60 — Béo +a(Vo-Véo)]

Taking the integral (the last term) by part, requiring that 6o =0 at the surface and minimizing the
total free energy

oK = Jaﬁr[a(T ~T)o+g,0° —B—aV’cloo(r)=0
leading to the equation for o

~aVio+a(T-T)o+g,0°-B=0.



((Note))

[a*r1v eV é0)] = [[[dxdydz (50' 055 80 50 9o d%0
ox Oy Oy 0z Oz

2
jdx6_0656_5 —|m oo
ox Ox
2
jd6£656_5—|w oo
oy Oy oy

2
jd260650_566_0|20 oo
0z Oz

Thus we get

0o 060 Ooc 650 60 060 U ’oc 0o
dxdydz(— +— = dxdyd. + O
”-[ e ( ox Ox Oy Oy 62 0z )= ”-[ e Z( 6y2 yoo

0z*

((Green function method))
We solve the differential equation

~aVio+a(T-T)o+g,0°-B=0

using the Green function method. Suppose that o = o, + ¢, where ¢ is the deviation of from each
equilibrium value o, .

a(T =T,)o, + g40'03 =0

and

—aVi(o,+ @) +a(l - T,)o,+ ) +g,0, —~B=0

or



—aVig+a(T -T)p+a(l -T.)o,+g,0, —B=0
where o, depends on T,

o,=0 for T>T,

a(T -T)+g,0,, =0 T<T.
(a) For T >T,

~aV¢+a(T-T.)p—-B=0

or

a(T L), B

[V -————p=

(b) For T <T,
~aV¢-2a(T-T.)p—B=0

or

2a(T,-T),, B

[Vi-——"¢=

Here we define the Green function such that
(VP =)G(r—r)=8@r—r") (Modified Helmholtz)
with

G(r—ry = -2 1]
B 47z'|r — r'|

1. : : : .
where x =— is the inverse correlation length and £ is the correlation length
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Fig. The reduced correlation length /a7, /a&(t) as a function of reduced temperature,
t=T/T,.

The solution of

V2 —k2)h(r) = - 20
(04

is given by



(r)=-[d’r'G(r—r )B(r)

:Id3r'exp[—lc|r—r| B(r")
47z|r —r'| a

—.[d3 ,exp[— K‘|l" r|
47za|r r|

B(r")
When B(r') is a highly localized magnetic field at the origin,
B(r')=B,6(r'-0)

we have

0

¢(l’) Id3 'exp[ K|l’—l’| 5( v) €Xp( KT)
a| drar

i

In general, ¢(r) has the form of
1
)~ ey
r

Note that y =1 and v = % Using the scaling relation (2 —7)v =, we have

n=0 (critical exponent)

where 7 is the critical exponent for the pair correlation function. Then we have d —2+7 =1 and

o)~
r

for d = 3, which is in agreement from the prediction from the mean field theory.

6. Fluctuation
We define the partition function as

Z = [ 6o exp[-pK (0)]



where

K(c)= j d3r[%a(T ~T)o? + % g0t —Ho+a(Vo)’]
Thus we get

oZ

7 = |o(BM)expl-BK ()] = (M )Z
or

110Z 10z
()= 3 2=

" BZoB B OB

where

M = .[d3ra
(M) = % j 5o M exp[-BK (o)]

% = 7"= [60(pM)* expl- K (0)] = f*(M*)Z

The fluctuation is given by

(84 = (022) - (3

l Z"Z—(Z')z

- 2

p z
AN
-5 ()
18

,82 aBZ

]

InZ

The susceptibility y is defined by



(M) 10°Inz
0B S 0B’

Z =
Then we have

@Mf:%x=@mf

(aM)" = ()= ()

12 2-(2)
- ,32 Zz

_L(Z)v

2

=57

2
=L28—21nZ
B OB

7. Spin correlation

We now consider the system of spin 1/2 magnetic atoms. Each atom has magnetic moment
U0, (0, ==x1). The magnetization is given by

M = u Zai
The fluctuation of M is obtained as

(AM) = uﬁ<(2 o, —<a>)2>
=ﬂ3222<<m—<0> ><(0,~(o)>

i

where < (o, —<0'> >< (o, —<0'> > is a spin correlation function. Since (AM )2 = % ¥ =kyTy, the

susceptibility is related to the spin correlation function as

l::_BTZZ<(O-" —(o)>< (o, —<0'>>



8. Universality and critical exponents

Critical exponents describe the behavior of physical quantities near continuous phase
transitions. They are universal, i.e. they do not depend on the details of the physical system, but
only on (i)  the dimension of the system, (ii) the degree of freedom such as Ising (n = 1), XY (n
= 2) and Heisenberg (n = 3) (for spin system), and (iii) the range of the interaction.
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Fig.  Universality class of the critical behavior, which depends on the dimension (d) and the
number of freedom (n). The Onsager point(d = 2, n = 1). The Kosterlitz-Thouless (KT
point) (d =2, n = 2). The liquid “He point (d = 3, n = 2).
M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

Magnetizion:



M =~(T,~T) (T<T)

Susceptibility:
x=T-T)" (T'>T,)
x=(T.-1)" (T'<T)

Heat capacity:
Cx(T-T)* (T>T,)
C~(T,-T)" (T<T)
Correlation length:
c=(T-T)" (T>T.)
x(T,-T)" (T'<T)

Critical isotherm:

M~ H" (T=T)
((Note)) Mean field critical exponent
a=a=0, ﬂz%, y=y'=1, 0=3
1
n=0, V= 5
9. Scaling relation

There are the following scaling relations for critical exponents.

a+2p+y=2 (Rushbrooke identity)



Q2-a)=dv (Josephson identity)

Q-nyv=y (Fisher identity)

ﬁz%v(d—2+77)

5=d+2—n
d-2+n

'

v=v
a=a
a+po+1)=2 (Griffiths identity)
y=p0-1 (Widom identity)

where d is the dimension of the system.

10. Universality class
http://www.sklogwiki.org/SklogWiki/index.php/Universality classes
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| | ‘Random—ﬂeld
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S >1/2, and a nonphysical region of negative £.
M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
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contours indicate negative a; the solid contours are for & > 0.
M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974).

11. Example of the first order phase transition Huang 19-3
The nematic liquid crystal used in display can be described by an order
parameter S corresponding to the degree of alignment of molecular directions. In



the ordinary fluid phase (S =0). The transition between the ordinary fluid phase

and a nematic phase can be modeled via the mean-field Landau free energy
E(S)=atS* +bS® +cS*,

where t =T —T,, and a, b, c are positive constants. The third-coefficient b is usually

small.

(a) Sketch E(S) for range of 7, from T >>T,, through 7 =T to
T < T, Comment on the value of S at the minimum of E(S) at

each value of T considered.

(b) What are the conditions for E£(S) to be minimum?

() Find the transition temperarure 7¢. (It is not 7o)

(d) Is there a latent heat associated with the phase transition? If so,
what is it?

(e) How does the order parameter vary below 7.?

((Solution))

E(S)=atS +bS +cS'
Z—? =2atS +3bS* +4cS> = S(4c¢S* +3bS +2at) =0

where a>0, 6>0, c>0.

We make a plot of the free energy E(S) witha =2,5=0.8, and ¢ = 0.2

For <0,



E(S) has two local minimum at S = « (<0) and S = £ (>0).

b(9b* —32act)

E(a)-E(f)=

256¢°
with
 _=3b=\9 ~32act
8¢
and

_=3b —V9b* —32act

p 8c

Note that E(a) < E(B) <0

~100!
Fig. ¢=-1.9 (red).




) . 3b 27b*
When ¢ = 0, there is one local minimum at § = ¢ = - —— , where E(a)=—

4. 256¢°
2,
3b
_5‘

27 b*
- 256¢°

b’ b

When t=—=T-1, or I =T+—

dac dac
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the present case ¢ = 0.4), where S = —zi(=-2).
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OE(S) _
oT

Entropy: S =- ~aS’

Note that S is no an entropy. The entropy change:

2
AS = a(ij
2¢

The latent heat:

2 2
L=TAS =(T, + b )a(ij
4ac 2c

b’ 9p*
For —<t<—
dac 8ac

-0.2-

Fig. t=0.44 (red), 0.46, 0.48 (green), 0.50, and 0.52 (purple), 0.54




0’
When t>—
8ac
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04
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Fig. t=0.6(red), 0.7, 0.8 (green), 0.9, and 1 (purple).

What happens to the order parameter well below 7¢?

W

-3

-2

-35tL

Fig.

10,
15!
_20¢
_25

-30f

t=-1(red), -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -

0.1.
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APPENDIX-I The first and second phase transitions



First-order transition Higher-order transition
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APPENDIX II Magnetic phase transitions. Typical experimental results

[U. Kobler and A. Hoser, Renormalization Group Theory, Impact on Experimental Magnetism
(Springer, 2010).]

(1)  Specific heat of “He adsorbed on grafoil at critical coverage for \/g X\/§ epitaxial structure.
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Specific heat of GdZn
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A3) Sublattice magnetization of K>NiF4
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Fig. Neutron scattering intensity at the (1, 0, 0) peak of KoNiF, as a function of temperature
(Birgeneau et al. 1970).

“4) Sublattice magnetization of CrF;
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L.J. de Jongh and A.R. Miedema, Advances in Physics, 50, 947 (2001). Experiments on simple
magnetic model systems



() (%)

Figure 95. The ‘staring crowd” phenomenon (Mattuck and Johansson 1968) is an
illustration of the fact that phase transitions are certainly not confined to physics but
are a more general phenomenon that can be found everywhere in Nature, whenever
one deals with a system consisting of elements between which there exists some sort
of feed-back mechanism (exchange). If one of the elements (spins, human beings) gets
conditioned in a certain fashion—in the above example the attention of one of the
persons is attracted by something at the window—the neighbouring elements become
conditioned in a similar way, even though there is no external force present that
compels them to do so (they may see nothing at all at the window in question).
Another example from daily life is the ‘spontaneous buying’ of luxury goods such as
colour-television sets, new cars, etc., which occurs when a given person has enough
neighbours around him that possess such an item.

APPENDIX-II Railroad track analogy of renormalization group






Mean field theory

For spin 1/2 system,

N
M= 7/”3 tanh(Su, B)

= np, tanh(Su, B)

or



M=ngu,(S)  (¢=2.5-2).

We assume that

B=B = AM
When y = , we have
B
M
y=—
iy
= tanh(Afu, M)
= tanh(AnBu,"y)

We note that

Anpy’ Y
in 2,27 2
Bus"y KT y=7
or
o kT
/1”/132

The critical temperature is defined by

x=1= Ky T"z
Anp,
or
kT, :ﬂ'nﬂ;

The reduced temperature is



So we make a ContourPlot of
y = tanh(2)
X

for x> 0.

We note that the critical temperature T, is expressed by

T _ 2SS +1)
3k

B

where J is the exchange interaction and z is the number of the nearest neighbor spins. When S =
1/2,

Using the relation

kpT, = % = Anu,’

or

zJ

A= 5
2np,

((Note))
Spin Hamiltonian:

H=221(S)S =~gu,B,S

where g =2. The effective magnetic field is



When g =2 and (S) =

zJ

eff 2/13

which is equal to

b , we have
2



Clear["Global *"];
f1 = ContourPlot[y == Tanh[%] , {x, 0, 1.2},

{y, 0, 1.2}, ContourStyle » {Red, Thick},
PlotPoints—>150];
f2 =
Graphics|[
{Text [Style["t=T/T. ", Italic, 12, Black],
{1.1, @0.02}],
Text[Style["y=M/ (Nug)", Italic, 12, Black],
{6.1, 1.1}11}1;
f3 = Plot[\/l— t, {t, @, 1}, PlotStyle » {Blue, Thick}];
Show[f1l, f2]

12

y=MI(Ntp)
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