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Johannes Diderik van der Waals (November 23, 1837 — March 8, 1923) was a Dutch theoretical
physicist and thermodynamicist famous for his work on an equation of state for gases and liquids. His
name is primarily associated with the van der Waals equation of state that describes the behavior of gases
and their condensation to the liquid phase. His name is also associated with van der Waals forces (forces
between stable molecules), with van der Waals molecules (small molecular clusters bound by van der
Waals forces), and with van der Waals radii (sizes of molecules).

He became the first physics professor of the University of Amsterdam when it opened in 1877 and
won the 1910 Nobel Prize in physics.
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1. Introduction

The van der Waals equation is a thermodynamic equation describing gases and liquids under a given
set of pressure (P), volume (V), and temperature (7) conditions (i.e., it is a thermodynamic equation of
state). It was derived in 1873 by Johannes Diderik van der Waals, who received the Nobel Prize in 1910
for "his work on the equation of state for gases and liquids. The equation is a modification to and
improvement of the ideal gas law, taking into account the nonzero size of atoms and molecules and the
attraction between them. van der Waals equation of state, when supplemented by the Maxwell construction
(equal-area rule), provides in principle a complete description of the gas and its transition to the liquid,
including the shape of the coexistence boundary curve.

Here we discuss the physics of the van der Waals equation of state from numerical calculations. We
use the Mathematica to determine the detail of the flat portion (the coexistence line of liquid phase and
gas phase). We also discuss the critical behavior near the critical point. To this end, it is significant for us
to get the appropriate Mathematica program to determine the nature of the flat portion (the coexistence of
liquid and gas phase). Before we started to make our own Mathematica program for the van der Waals
equation of state, we found three resources for the programs related to this equation (as far as we know).
The Maxwell construction was briefly discussed using the Mathematica by Kinzel and Reents (1998).
Second is form the book of Nino Boccara, Essentials of Mathematica (Springer, 2007). The third is from
Paul Abbott, The Mathematica Journal vol.8 Issue 1 (2001, Trick of the Trade, Maxwell Construction).
Here we use the method with FindRoot, which is used by Abbott for the evaluation of Maxwell’s
construction. There is no simple analytical solution to equation for the Maxwell construction. Fairly
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accurate initial guesses are required. These can be obtained from the plots of the unphysical van der Waals
equation. Here we show our Mathematica program to discuss the van der Waals equation of state.

Here we use the Mathematica (ContourPlot, ParametricPlot, Plot3D, ParametricPlot3D, and so on) for
the calculations. Because of the nature of the nonlinearity in the van der Waals equation of state, the use
of the Mathematica is essential to our understanding on the critical behavior of liquid-gas system around
the critical point.

Although we spent many years in understanding the nature of the van der Waals equation of state.
unfortunately our understanding was not sufficient. Thanks to the Mathematica, finally we really
understand how to calculate the exact values of thermodynamic parameters at fixed temperatures such as
P1, Vi, V2, V3, Vml, Pml, Vm3, pm3 (see the definitions in the text) using the Mathematica. Using these
parameters we will discuss various thermodynamic properties of the van der Waals equation of state.
There have been so many books and papers since the appearance of the van der Waals equation. Almost
all the universal properties of van der Waals equation have been discussed thoroughly. Although there is
nothing new in this article, we present our results of calculations using Mathematica.

2. Historical Background

The proper elucidation of the nature of gas-liquid equilibrium and the so-called critical point was
gained by a series of experiments carried out by Thomas Andrews at Queen’s College, Belfast, between
1861 and 1869. He chose carbon dioxide (CO») for his work. It is gaseous at normal temperatures and the
pressure required for studying the whole range where gas and liquid are in equilibrium are relatively low.
He determined, at different temperatures, the change in the volume of a given quantity of the substance
when the pressure varied. The resultant curves are called isotherms because they each refer to one and the
same temperature.

The flat part of the isotherm reveals an important fact. Since the pressure remains constant, while more
and more of the gas condenses into liquid, the pressure of the gas in contact with the liquid must be always
the same, quite independent of whether a small or a large fraction if the volume is occupied by liquid. It
also is apparent from Andrew’s diagram that this equilibrium pressure rises as we go to higher isotherms,
i.e., as the temperature is increased. Moreover, we also notice that the flat part becomes shorter until a
singularly important isotherm is reached which has no true flat portion at all but just one point (the so-
called the critical point 7¢) at which the direction of the curve changes its sign. The higher isotherms are
now all ascending smoothly over the whole range of pressure and volume, and if one goes to still higher
temperatures, the isotherms attain more and more the shape of true rectangular hyperbola. This is then the
region in which Boyle’s law is valid.
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Fig.3 Isotherms of a real gas (CO») as measured by Andrews. They approximate Boyle’s law
only at high temperatures. At low temperatures they are more complicated and below the
critical point there is a region of liquefaction. The critical temperature of CO; is 31 °C.
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Fig.4 Isotherms of a real gas (H2CO3) as measured by Andrews.

Andrew’s result not only yielded a wealth of new facts but they also presented a beautifully complete
and satisfying picture of the relation between the gaseous and liquid states of aggregation. Andrew’s
careful measurements opened the way to an understanding of the strong forces of cohesion which are
vested in each atom but never reach the dimension of ordinary macroscopic observation. It should also be
noted that, while Andrew’s observations were confined to carbon dioxide, the pattern is quite generally
valid.

We have used Andrew’s diagram not only for its historical interest but also because it illustrates in a
clear and convincing manner the significance and the boundaries of the liquid state. Van der Waals used
Andrews’s terminology, and even adopted the title of Andrews’s Bakerian lecture, without reference,
almost verbatim as the title of his doctoral thesis of Van der Waals developed his equation of state
independently, but he did compare it with Andrews’s results.



Fig.5 (i) The container of volume " has N molecules, each of volume b. The volume not occupied by
molecules is V' - Nb. Intuition suggests that the free volume should be used in the gas law in place
of the container volume V. (ii) Attractive force between molecules. These forces contribute a
negative internal pressure N°a/V? near the boundary should be used as the pressure in the gas
law.

Only four years elapsed before van der Waals used newly developing ideas on the kinetic theory of
gases to give a plausible theoretical explanation of Andrew’s experimental data. van der Waals assumed
that gas is made up of molecules with a hard core and a long-range mutual attraction. The range of the
attractive forces was assumed to be long compared with the mean free path, and they give rise to a negative
internal pressure.

internal — 2

\%

where v=V/N is the volume per molecule. For the hard core he made the simplest assumption that the
available volume is reduced from v to v-b. Hence the equation he put forward was

T
P:Pinternal +kB—T’ or P+£2: kB *
v—>b vi v—b



The new equation, which instead of the old PV /T =constant now has, when plotted, a peculiar wiggly
shape. In this wiggly region van der Waal’s equation has for any given pressure three solutions for the
volume. A straight line, joining any of these three solutions will then result in a curve which very closely
resembles the flat portion of the Andrew’s isotherms. It is no doubt that in its broad concepts the van der
Waals’ approach was correct. The importance of this equation was quickly recognized by Maxwell who
reviewed the thesis in Nature in 1874, and in a lecture to Chemical Society in 1875. It was in this lecture
that Maxwell put forward his famous “equal-area construction, which completes the van der Waals
treatment of liquid-gas equilibrium. The equal-area rule (Maxwell construction) can be expressed as

VG
BV, ~V)=[Pdv,

Vy

where Py is the vapor pressure (flat portion of the curve), V; is the volume of the pure liquid phase on the
diagram, and Vj is the volume of the pure gas phase. The sum of these two volumes will equal the total
volume V.

Thanks to such pioneering works, we now understand the essential nature of liquid phase and gas
phase. A flat portion for the low temperature phase, corresponds to the region where the liquid condenses
from the gas. Following any of these isotherms from large to small volume, i.e., starting on the right-hand
side, we encounter the rise and then a kink where the level portion starts. Here the very first droplets of
liquid appear. When now the volume is further decreased, more and more of the gas turns into liquid until,
at the end of the level stretch, there is no gas left at all. From now on any further increase in pressure
hardly changes the volume at all, showing that the liquid phase is highly incompressible.

Much more detail of the historical background on the van der Waals equation of state can be learned
from the following books.

3. Origin for the van der Waals equation of state

van der Waals realized that two main factors were to be added to the ideal gas equation: the effect of
molecular attraction and the effect of molecular size. The intermolecular forces would add a correction to
the ideal gas pressure, whereas the molecular size would decrease the effective volume. In the case of the
ideal gas there is no intermolecular attraction. The intermolecular attraction decreases the pressure from
its ideal value. If P_, is the pressure of a real gas and P, , is the corresponding pressure of the ideal gas,

i.e. the pressure in the absence of intermolecular forces, then

Pdeal = l)real + 5p 2

1

where dp is the correction. Since the pressure is proportional to the number density (N /V') (as can be
seen from the ideal gas equation), dp should be proportional to (N /V')). In addition, the total force on
each molecule close to the wall of the container is also proportional to the number density (N /V')); hence

Jp should be proportional to two factors of (N /V')) so that one may write:
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N
o =a(—)?.
P a(V)

The correction to the volume due to the molecular size, i.e., the" excluded volume," is simply
proportional to the number of molecules. Hence

Viw =V —Nb,

in which b is the correction for one mole. Substituting these values in the ideal gas equation

EdealVdeal = NkBT .

1

we obtain the van der Waals equation

aN’
(P+—-)V — Nb) = Nk,T .
since
N N
Preal = P = Pideal - 5p = Pideal - a(_)2 4 or Pideal = P + a(_)2
vV vV
O
o
O
O
(a) (b)
Fig.6 van der Waals considered molecular interaction and molecular size to improve the ideal

gas equation. (a) The pressure of a real gas is less than the ideal gas pressure because
intermolecular attraction decreases the speed of the molecules approaching the wall.
Therefore P, = P, —op. (b) The volume available to molecules is less than the volume

re

of the container due to the finite size of the molecules. This "excluded" volume depends
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on the total number of molecules. Therefore V,, , =V —Nb. [D. Kondepudi and L
Prigogine, Modern Thermodynamics, p.18 Figure 1.4].

4. Derivation of van der Waals equation: Helmholtz free energy
For ideal gas, the partition function is given by

so the free energy F is calculated as

ZIN)

N!
=—k,7/(NInZ, —InN!)
~—k,T7/(NInZ, —NInN + N)

F =—k,T In(

= —kBTN[ln(%) +1]

n
= —k,TN[In(-£) +1]
n

N : :
where n = 7k and n,, is the quantum concentration;

0 — (kaT)z/z - mk,T P2 _[27Z7”kBT]3/2 _ (2kaT)3/2
0o 272?12 hZ hZ h3 ?
27—
4r
: N N 1 :
where m is a mass of atom. Here we replace n =— by N = 5 We also add a correction for the
j— v j—

. . a a . .
intermolecular attractive forces, — N°— = —N — . Then the Helmholtz free energy is obtained as
v

f= % = —k,T{In[n,(v—b)]+1} —%
=k, TIn(v—b)— = —k,T(Inn, +1)
A%

= —k,TIn(v—b) -2 + (T
%
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where

O(T) =k, T[lnn, +1]

2wmk,T)"

3/2
Camk,)" |

= —k,T{In[

=—k,T{InT** +1n }

=—k,T7(InT** +Ina +1)

=—kBT(%lnT+lna+l)

with the constant «

N (272771kB)3/2
o= T .

In summary the Helmholtz free energy is obtained as
a 3
f=———k,T[In(v->) +ElnT+lna +1].
v
The pressure P is obtained as
{5), 1), 453
oV )iy o )ry v—b v

or more simply,

(P+)(v=b)=k,T,
vV

((van der Waals equation of state))
or

k, T

: 4 : :
Since v = N the above van der Waals equation can be rewritten as
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Na

(P+ B

)V —bN) = Nk,T .

((Note))
Helmholtz free energy:

Na
14

F = =Nk, T{In[n, (V_TM’)] +1)—

Entropy:

oF V-Nb), 5
S——(a—TjV—NkB{ln[nQ( 5 j]+5}

Internal energy:

2
U=F+ST=2Nk,7-2 4
2 %

Pressure:

, V? V-bN

__(G_Fj N'a = Nk,T
oV

Enthalpy:

2N’a . N’bk,T
14 14

H(T,V):U+PV:§NkBT—

Gibbs free energy:

G=F+PV

N’a  Nk,T v

= —Nk,T{In[n, (V_T]Vbj] +1} - 2 7 + BN

REFERENCES
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman, 1980).
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5. Law of the corresponding state
[apj 0 o°P)
o). oV’ ,

From the condition, [%Dj =0, we get

T

2a kT
v (v=b)

2

P
From the condition, 0 — | =0, we get
o ).

—3a k,T
—+ =
vi o (v=b)

From Egs.(1) - (3), we have

1
PL’:LQ’ V6=ﬂ=—=3b’
27b N p.
Note that
Pcvc zngTc’
or

PN = kN, T = RT

c?

a_27k327;2_ 1 27RT’
64P. N, 64P

227

(e

_kT_ 1 RT,
8P N, 8P

b ?k 5. (thus the unit if a/b is the energy).

13

(1

)

3)



Here we define the dimensionless variables by

P

and the dimensionless form of the van der Waals equation,

(p, + iz)(vr _ %) = %tr = Law of corresponding state.
vr

((Universality)) Law of corresponding state

This equation is universal since it contains no parameters characteristic of an individual substance,
and so it is equally valid for all. The variables of p,, v,, and ¢ 1s called the reduced variables. The
thermodynamic properties of substances are the same in corresponding states, that is, states with a pair of
equal reduced variables from the complete triplet of variables. In fact, the existence of such an equation
implies that if two reduced variables are the same for a set of the systems, then the third reduced variable
is also the same throughout the set.

((Visualization of the phase transition of van der Waals system by Mathematica))

The phase diagrams of p: vs vr and vr vs p; are shown below. It can be obtained by using the Maxwell
construction for the van der Waals system (we use the Mathematica to get this. The method will be
discussed later).

4. 00

0.90
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Fig.7 The phase diagrams of p: vs v; fot ¢, =0.80 — 1.20. The horizontal straight line for #<1 is
the coexistence line between the liquid phase and the gas phase.

300 v

25}

2.0

1.5}

1.0
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Fig.8 The v: vs pr phase diagram at fixed reduced temperatures (# = 0.80 -1.20 with Az = 0.02).
The vertical straight line for #<1 is the coexistence line between the liquid phase and gas
phase.
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tr =0

-0.5
& D,

7 v

&L

Fig.9 dp, /0v, vs v, phase diagram at fixed reduced temperatures (. = 0.80 -1.20 with 4% = 0.02).
op,/ov, =0 for v, <v<v, (1, <1).
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Fig.10 Typical examples for the Maxwell construction. The phase diagrams of p; vs v fot = 0.99
and 0.98. The area of closed path a-c-b-a is equal to that of the closed c-d-e-c. The path a-
c-e is the coexistence line.

6. Critical points and critical exponents
To examine the critical behavior, we write

P v T
p.=— =17, v=—=14+0, t,=—=1+7
P v T

C c C
where 7, @, and 7 can be regarded as small. We obtain the universal equation

3, 80+9)
1+ 2+3w

p,=l+r=-

or expanding

p. =1+
=1+47 - 610+ 970" —(évtﬂr)a)3 +(2+ET)0)4 —(%4‘%2')0)5
2 2 4 4 8 8
393 . 729 . 5 (1)
+(—+—10)® +.....
16 16

=1+47 - 610+ 9700 —%af +0(t0”, ")
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The term omitted from this expression are justified post hoc in fact, we can see that o = V7, s0 Eq.(1)is

indeed the lowest non-trivial order approximation to the equation of state near the critical point.

((Mathematica))

18



Critical papameter of the van der Waal’s equation
Pc, vc, and Tc

Clear["Global *"];

kBT a
P= -
v-b 2

eql =D[P, v] // Simplify

kBT 2 a
- +
(b—v)2 3

eq2 =D[P, {v, 2}] // FullSimplify

6 a 2 kBT
- +

v (—b+v)3

eq3 = Solve[{eql == 0, eq2 == 0}, {v, T}] // Simplify
8 a

{{V%3b, T%m}}

{Pc, vc, Tc} ={P, v, T} /. eq3[[1]]

(2. 30, —>—}
27 b 27 b kB
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eqg5=P/Pc /. {T>Tct} // FullSimplify

27 b 8 t
- +
v2 -b+v

egb=eq5 /. {vovc (1l + w), t>1+t} // FullSimplify

3 8 (1+71)
- +
(1+w)? 2+ 3w

Series[eqg6, {w, 0, 8}, {t, 0, 8}] // Normal

1+4t—6tw+9tw2+<——

3 27 T
- >w3+

2 2
21 81T, 4 99 243 T, s (393 72971, o
(—+ )u)+(——— )u)+< + W+
4 4 8 8 16 16
1419 2187 t 7 4833 6561 T 8
(- - J o+ | " | w
32 32 64 64
(a) Critical exponent S
We start with
2 3 3
prl+4r-6700+ 9700 —Ea)
105 p,
1_00; & b=t
095/

085}

Fig.11 Physical meaning of p, =1+47 at = 0.
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When w =0,
p,=1+4r  with 7 <0.

which is nearly equal to the reduced pressure p; for the coexistence line (the path a-c-e). Then we have
_bro->w* =0 ,

or

w=0, ow=12\J-1.

where 7 < 0. Then we have
W, =2-r, @, =-2\-7.

The reduced pressures vi (= v;) at the point a and v3 (= v,) at the point e, are obtained as

v=1+w,=1+24J-171,
V=V =V, =V, =4N-1,

v, —v, depends on (-7). It reduces to zero when 7 — 0_. The critical exponent Sis equal to 1/2.

p=

% (mean-field exponent).
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Fig.12 The points a; (vi,p,), ¢; ,(v,,p), and e; (v5,p,), in the p-v plane. p, =1+4r7.
v=l+w =1+2-7. v,=1+@,=1-2V—7 . ris negative. &£€=—7 =|r| is very small.

(b)  Critical exponent yand »’
The isothermal compressibility is defined by

1% __i[a_Vj __L (o ~_L[6_WJ
! V ap T ljcvr apr P ljc 672' T'

Since
1
7z:4r—6m)—§a)3, (8_0)) =,
2 or ). 6r+20)2
we get
KT=—i(a—a)j =—(6r+=w")"
R\or ), P
For =0, w=0.
|
K, =—
" 6P
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For <0, o> =-4r,

K; = %(61’ ~187)"' = #(—z‘)1 ,

c

The isothermal compressibility x, diverges as #, —1+0 with a critical exponent
y=y'=1. (mean-field exponent).
In summary, we have

1

6T T>T
T
K, = :

2 <k

(¢) Critical exponent for specific heat at constant volume
The specific heat predicted by the van der Waals theory is

kB[§+2(l—§g+...) t, <1
o=l 2 27 25
v 3
kBE tr>1

where ¢, =3k, /2 is the non-interacting (high-temperature) limit or ideal gas. Thus we have the critical

exponent,
a=0.

Note that the slope of ¢, vs # is finite as ¢#, — 1 from below, so that we have &'=0.

((Note)) This discussion is repeated later for the critical behavior of the specific heat.

(d) Critical exponent ¢ (critical isotherm)
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at ¢, =1. We expand p: at t=1 (T = T¢) in the vicinity of v, =1.
3 ;21 s 99 s
=W, -y +—0 -)"'——W.-1) +...
P, 2(r ) 4(, ) 8(’ )
This is approximated by
3 3 o
p—lx=2 (v, =D e (v, =17,

or

1/6

v, ~1=(p, -1
in the region very close to the critical point, leading to the critical exponent (critical isotherm)
0=3 (the mean-field exponent)

(e) Thermal expansion coefficient
The thermal expansion coefficient is given by

%

e a8

or ), Tw\o, ), Tv (op,
v, ),
Using the expression of K,

1[6Vj 1 (ov,
KT = ——| — = —_—
V aP T ljcvr apr T

we have
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o= 1 (ov. | |(op,
Y—VCVV apr T 8tr V

:_L(_PcerT) 817,
T ot, y

Noting that
P () __8
ot ), \o ) 3 -1
we get
P 8
a=—"K,——
T, ~3v. -1

Around the critical point, we have

2
— T>T
AP 3T.r ‘
a— ;= h
s Lk

So that it is strongly divergent like K, .

® Mean-field exponent relation
From the above discussion, we find that the following relation is valid,

a+2f+y=2,

which is the same as that predicted from the mean-field theory. We also have the relation predicted from
the mean field theory of phase transition,

L @=n-9)
2 1+6
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These results imply that the van der Waals theory is one of the mean field theories. Well above the critical
temperature there exists the short-range order due to the attractive interaction between particles. On
approaching the critical temperature, short range grows gradually. At the critical temperature, a part of
short range order changes into the long-range order. Well below the critical temperature, the long-range
order extends over the entire system.

7. Scaled thermodynamic potential
(a) Scaled Helmholtz free energy f
Using the reduced variables, the Helmholtz free energy is given by

f= _f—kBT[ln(v—b) +%lnT+lna +1]
\%

a 1 8 I, 3
=—{—-—t[In(v.——)+=Int, +C
b{ 3vr 27 r[ (vr 3) 2 r 1]}

where C) 1s constant

C =3 In(T)+na+n@by+1=S0 -3
2 k, 2

g:ﬂkﬂTc'

b 8

(b) The law of the corresponding states
The pressure is given by

T,N

ov vi ov—=b
a kBT'ctr
= -
9b%v.” 3bv,-b
a 8a t

r

— +
9b*y’  27b* 3v, -1
AP S S P
b 9y’ 273v, -1

The reduced pressure pr is given by
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P 1 a, 1 8 ¢ 3. 8,
p=—7= (= +> )=——+

P a B 9y’ 273y-1 v’ 3v,-I
27b°
or
3 8
Fr v: 3v.-1.

(c) Scaled internal energy u
The internal energy is determined by standard thermodynamics,

U
u=—
N

:_Tzi(i
oT T

a 3
=—+—k,T
v 27

S +§kBTctr
3bv, 2

a 1 4¢
=—(——+ r
b( 3v. 9 )

)V

or

with
2= 2kBTc .
b 8

(d) Scaled entropy s
The entropy S can be similarly determined by standard thermodynamics
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where

3/2
5= —[@J = ky In(v—b) + kB[ln%jL%

oT )

=k, ln(v—b)+%k3 InT +ky(lne +§)

=k, In(3bv, D) +%k3 In(tT)+k,(Incx +§)
or

s =ky{ln(v, —%)+%lntr +%lnTC +1na+1n(3b)+§}

1. 3
=k,[In(v, _E) +Elntr] + 5,
where
3 5
s, = ky[In o +1n(3b) +ElnTC +5]

In the adiabatic process (s = constant, isentropic process), we have

3/2
]

In[(v, —%)tr = const.

or
1
(v, _E)t’m = constant

Note that for the ideal monatomic gas,

3/2
vt~ =constant.

r

(e) Scaled Gibbs free energy g
The Gibbs free energy G is given by
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g(T,pP)=

=f+Pv
=_2_a+kBTZ_kBT[ln(v—b)+%1nT+lna+l]

\% V-

G(T,P)
N

g(T,P) can be rewritten as

2a__ ky,T,3b(v,)

g ) ==y 3bv )b

— kgt, T {In[3b(v, ) ~ b]

+%ln(z‘rTc) +Ina +1]}

2a 8a tv 8a 1
=G, )
3b(v.) 27b v _l 27b 3

3

+%lntr +%ln(TC) +Ina +In(3b) +1]

:ﬁ{_i_Fi AV —itr[ln(vr—l)
b' v, 27| 1| 27 3

"3
3 3
+Elntr "‘EIH(TC) +Ina +In(3b) + 1]}

a, 2 8| tv 8 I, 3
=—{—+—| L |-—t[In(v. — =)+ =Int, + C,
b{ 3Vr 27 y _l 27 r[ (r 3) 2 r 1]}

"3

Here we have

3 s, 3
C="In(T)+Ina+In3h)+1="L—-=.

B

where so is the constant entropy. Note that the above equation gives g as a function of v and 7. The natural
variables for g are P and 7,

3 1, 8
+—)(v, —=)=—t..
(pr vrz )( r 3) 3 r
We note that the Gibbs free energy can also be obtained by the following approach.
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g=_
=u—TIs+Pv
=£(_L _)+—ll’lt +07- a +kBTCtr3bvr
b 3v, k,” 3bv., 3bv, —-b
. L4 ——)+§lnt L Soq_ @ | 8a iy,
b 3v, 27b ky™ 3bv, 27b 1
"3
a 2 8 tv 3
=4+ _rr In _ 4 +_lnt __+
AT B T 0+ b
"3
a, 2 8 tv 8 1 3
AT T N R K A R
"3

® Thermodynamics surface

From the expression of u, the temperature 7 is calculated as

2 a
kT :E(_‘Hf‘)

The thermodynamics surface u(s, v) is obtained by eliminating 7, as

s—ky,In(v—->b)-s, =%k3 InT

or
3

szch[ln(v—b)+ElnT]+s1

with
5

8, sz(lna+E)

Then we get

3
=5k3 In

2% +u)
\%
3k,
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2(% +u)

v 2

—r__=e -8, —kyIn(v—->b
3%, XP{3kB[S S, —ky In(v—b)]}

=emﬂ§§«s—anemﬂ—§hmv—bn

B

=w—mz”wm§}@—an

B

Thus u depends on v and s,

a 3k, _2/3 2(s —s,)
u=——+=—"Lw-b)y""exp[——
= o) p[3% ]
=L (v-b)?"
v
with
(S s;)
C, =
0 2 exp[ ]
8. Maxwell construction using the Gibbs free energy

(a) Maxwell construction for the v.-p, phase diagram
Unfortunately we cannot conveniently put G into an analytic form as a function of P instead of V. We
need

G(T,P,N)= Nu(T,P).

It is p that determines the phase co-existence relation; g = u, . At any T, the lowest branch represents the

stable phase. The point a (v: = vi = v;) and the point e (v: = v3= ;) are on the coexistence line denoted by
the path a-c-e.
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Pr

0.75 0.80 0.85 0.90 0.95 1.00

Fig.13 The v vs pr phase diagram with a fixed reduced temperature # (in this case # = 0.96). The
area a-b-c-a is equal to the area e-d-c-e. (Maxwell construction)

The reduced volumes vi and v; are determined by the condition that
/Lll(tr’pr) = /ng(tr’pr) ’

along the horizontal line between vi and v3. This will occur if the shaded area below the line is equal to
the shaded area above the line.

dG =—SdT +VdP + dN .
For N = constant and 7" = constant,
dg =v,dp,,
for the scaled Gibbs free energy, and
g,—g=[vdp,.

The integral is just the sum of the shaded area (Maxwell construction).
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(b)  Maxwell construction for the p, vs v, phase diagram

Fig.14 The phase diagram of v: vs p: at #: = 0.96.
Att =t,

P

g(t, =t,p,)=g(t,p)+ [v.(p,.t)dp, ,

Pa

We assume that p, = p, (the pressure at the point e). Then we have

g(t, =1, p) =g, )+ [v.(p,.t)dp, + [v.(p,.t,)dp, ,

abc cde

Since g(¢,,p,) =g(t,p,), we have

J.v,(p,,tl)dp, + Iv,(p,,tl)dp, =0,

abc cde
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or

[v.(pst)p, + [v,(p.t)dp, = [v,(p,t)dp, + [v,(p,.t,)dp, .
dc bc

ed ab

We note that

Ivr(pr,tr)dpl >0, jvr(pr,tl)dpr = —Ivr(pr,tl)dpr

ed dc cd

and

Ivr(pr,tl)dpr >0, jvr(pr,tl)dpr = —Ivr(pr,tl)dpr -

be ab ba

Then we have

I v, (p,.1)dp, - I v,(p,.t)dp, = I v, (p..1,)dp, - I v,.(p..1)dp,

ed cd be ba

which means that the area of the region e-d-c is the same as that of the region a-b-c. Note that
pa =pc =pe=p1'

It is only after the nominal (non-monotonic) isotherm has been truncated by this equal area construction
that it represents a true physical isotherm.
In summary, in the p: vs v; phase diagram,

(1) The a-c-e- is the coexistence line ( p, = p, and ¢, =¢,) of the liquid phase and the gas phase.

(1) The area (a-b-c-a) is the same as the area (c-d-e-c) [Maxwell construction].
(i) K is the critical point (pr=wv=t=1).
(iv)  The line KA and the line AB are the spinodal lines.
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Fig.15 The phase diagram of p: vs v; at £ = 0.96.

(©) Example: the area for the v, vs pr and the area for the p, vs v, for #, = 0.95

1.5+
d
1.0
b
a
0.5F
Pr
0.70 0.75 0.80 0.85 0.90
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101p,
t =0.95
09t
osr @ C e
b
07t
L L L L vr L
1.0 15 2.0 25 30

Fig.16 prvsveeurve at &= 0.95. a: (vi, p1); b (Vim, pim), ¢ (2, p1), d (V3m, p3m), € (v3, p1). Maxwell

(equal-area) construction. The pressure p where two phase coexistence begins for # = 0.95
is determined so that the areas above(c-e-d) and below the horizontal line (a-b-c) are equal.
In this case, p = 0.811879 (the pressures at a and e).

t+=0.95 p1=0.811879,

vi=0.684122, vy =1.04247 vy =1.72707

vim = 1.33004, p3m = 0.845837 (local maximum point)
vim = 0.786967, pim = 0.74049 (local minimum point)
g(t,,v,)=0.313223. g(t,,v,,)=0.319189

g(t,,v, ) =0.307563

(d)  The Gibbs energy at the critical point (K)

Let us plot the p-v- plane an isotherm of the liquid and gas. According to the thermodynamic
inequality we have

% <0,
ov, ),

which implies that p, is a decreasing function of v.. The segments a-b and d-e of the isotherms correspond
to metastable super-heated liquid state and super-cooled vapor state, in which the thermodynamic
inequality is still satisfied.

A complete-equilibrium isothermal change of state between the points @ and e corresponds to the
horizontal segment a-c-e, on which separation into two phases occur. If we use the fact that the points a
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and e have the same ordinate p, = p,, it is clear that the two parts of the isotherm cannot pass continuously

into each other: there must be a discontinuity between them.
The isotherms terminates at b and e, where

(aLJ =0
avr .

Curve A-K-B on which the thermodynamic inequality is violated for a homogeneous body; boundary of
a region in which the body can never exist in a homogeneous state.

Near the critical point, the specific volumes of the liquid and gas are almost the same, denoting them
by v, and v, + & v, we can write the condition for equal pressure of the two phases

pr(vrﬂtr) :p(vr +5vr’tr) ’

or

2
p. +l§vr 8p2’ +..=0.
v ) 2 v, )

r

Hence we see that, when év. — 0 (at the critical point),

(%J ~0.
ov, ),

(e) Properties of the Gibbs free energy in the metastable state and unstable state
To see the qualitative behavior of the Gibbs function g(¢., p,) as a function of p,, we use the relation

or
P

g(t,,p,) = g(t,, py) + [v,dp, .

Po
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On the g(¢,, p,) curve as a function of p_, v, represents the slope, (S—g)tl_ :

r

We take the van der Waals isotherm a-b-c-d-e in the pr-v: diagram. We make a plot of the corresponding
g(t,, p,)curve as function of p. at # = # (in this case, #.= 0.95).
0.320r
0315}
0.310F
0.305"

0.300F

0.295r

0.290 . . . .
0.70 0.75 0.80 0.85 0.90

Fig.17 Gibbs free energy as a function of pr at # = 0.95.

2
(1) Around the point d (on the path d-e-g) where (%)tl =0,and & , = —(8 P ), >0, p, can be
vr v}"

expressed by using the Taylor expansion, as

9 1(0°
pr _pm3 z(al;rJ (vr _vm3)+5( avp; jl (Vr _vm3)2’

r

r ll

or
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pr _pm3 z_%(vr _vm3)2 >

or
vr _vm3 = \/Egm;/Z(pm} _pr)l/2 :

Then we have

a 1/2 -

ov e .
So that [ - J become infinite at the point d. Then g(#, p,) curve has a cusp.
4

p,

. og. . . ov, . . " .
(1) From b to d (on the path b-c-d). v, = (8_)" Increases as pr Increases. (a ~), 1s positive (this
portion is unstable).

2
(i)  Around the point b (on the path /-a-b) where (gp 5), =0 and, &, :(8—p; , >0, p, can be
v, v,

expressed by using the Taylor expansion, as

2

P, =P = (Z‘v’: ), ‘le“%(aav? ), (=)
or
I :
D= Pm ™ Eéml(vr ~ Vo)
or

vr _le = \/Egmll/z(pr _pml)l/2 .

Then we have

a 1/2 -
(a;rj = 5:1/15 (pr _pml) " *
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ov e .
So that [8 - J become infinite at the point » and g(, p, ) curve has another cusp.
pr ll

(iv)  From / to b (on the path /-a-b). v, = (aa_g)t,. decreases as p, increases. (gv’ ), 1s negative, but

r r

becomes small as the point / is approached.
In summary, the path d-c-b corresponds to unstable region and the paths e-d and b-a are metastable.
) Numerical calculation

We can make a plot of g vs p, where # is fixed, using the ParametricPlot of the Mathematica. The
scaled Gibbs free energy g and the reduced pressure p, are given by

2 8| tv 8 1. 3 3
=——+—| = |-—t,[In(v, —=) +=Int, - =],
8=75, g T 1| gy e ol

"3
and
3,8
Pr vr2 3vr—l.

So we make a ParametricPlot of the co-ordinate (p,,g) when # is given as a fixed parameter and v; is

continuously changed as a variable. The Mathematica which we use is as follows.

((Mathematica))
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Clear["Global "="];
glitr , vz ] :=
-2 B trvr

8 tr(Lo [vr 1] 3L0 tr 3 .
3vr+2?vr_% 27 g 3]tz Leglezl - s

B
_3 E

pr[tr_, vr_] := +
vr? vr—%

tr;

tr =0.95;

sl = ParametricPlot[Evaluate[{pr[tr, vr], gl[tr, vr]}],
{vr, 0.5, 10}, PlotStyle » {Red, Thick},
PlotRange » {{0.70, 0.9}, {0.29, 0.32}},
AspectRatio —» Full];

(1) t=0.99

The pr dependence of the scaled Gibbs energy is shown below. We note that the scaled Gibbs energy
is the same at the points @ and e. The Gibbs energy along the path a-b (the metastable state), along the
path b-c-d (the unstable state), and along the path d-e is higher than that along the path / (liquid)-a and
along the path e-g (gas). This means that the coexistence line (a-c-¢) is the equilibrium state. It is seen that
the Gibbs free energy vs pr shows a thermodynamically invisible bow tie.
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0.94 0.96 0.98 1.00
Fig.18 ve vs pr for £ = 0.99. The line a-c-e is the co-existence line between the gas and liquid

phases. K: critical point. The lines A-K and B-K are spinodal lines. The path a-c-e is the
co-existence line of the liquid and gas phases.
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0.3375

03370
0.3365
0.3360
Pr
0.3355 : : : : :
0.950 0.955 0.960 0.965 0.970 0975
Fig.19 Scaled Gibbs free energy g vs pr for # = 0.99. g is in the units of (a/b). The path b-c-d is

unstable. p1 = 0.960479. pa1 = 0.955095 (point b). pms = 0.964369 (point d)
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pr

.=

0.99

0.98

097kL

Fig.20 The phase diagram of p, vs v; for #: = 0.99. vi = 0.830914 (point a). v; = 1.24295 (point e).
p1=0.960479.
(i)  #=0.98
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0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02

Fig.21 v vs pr for #: = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The
path a-b and the path d-e is unstable. The area enclosed by a-b-c is the same as that by c-
d-e (Maxwell construction). p1 =0.921912. v = 0.775539. v3 = 1.3761.
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Fig.22

0.334 -

0.332

0330

0328

0.326 ' ' ' ' ' ' ' '
088 083 090 091 092 093 094 095 09

Scaled Gibbs energy g (in the units of a/b) vs p: for # = 0.98. The path b-c-d is unstable.
The shape of the b-c-d is similar to spine (the spinodal decomposition). The path a-b and
the path d-e are unstable. p; = 0.921912. pm1 = 0.905756 (point b). pm3 = 0.932089 (point

d).
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Fig.23 prvs v; for t, = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The
path a-b and the path d-e are metastable. The area enclosed by a-b-c-a is the same as that
by c-d-e-c (Maxwell's construction). p1 =0.921912. vi = 0.775539. v3 = 1.3761.

(i) #=0.97

06, . : s Pr
0.80 085 0.90 0.95 1.00
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Fig.24 Phase diagram of v vs pr at t, = 0.97.
0330

0328+

0.326

0324}

0.322

0320

Pr

0.84 0.66 0.88 0.90 0.92

0.318

Fig.25 Gibbs free energy as a function of pr at #: = 0.97. p1 = 0.884294. pm1 = 0.853279. pm3 =
0.901849.
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pr

0.90F

0.80 /

Fig.26 Phase diagram of pr vs vy at #: = 0.97.

(iv) &=0.96

0.75 0.80 085 0.90 0.95 1.00

Fig.27 Phase diagram of v: vs pr at t; = 0.96.
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0.330r

0.325r

0.320 -

0.315r

0.310+

0305 A
0.75 0.80 0.85 0.90 0.95

Fig.28 Gibbs free energy as a function of pr at # = 0.96. p1 = 0.847619. pm1 = 0.798108. pm3 =
0.873186.

1050 p,

Fig.29 Phase diagram of pr vs vy at #: = 0.96. p1 = 0.847619. v = 0.708189. v3 = 1.61181.
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10.  Double-tangent construction based on Helmholtz free energy

Maxwell construction based on the Gibbs free energy is equivalent to the double-tangent construction
based on the Helmholtz free energy. Here we discuss the double-tangent construction using the concept
of the Helmholtz free energy.
(a) Double-tangent line (coexistence line)

Using the relation

_ a‘](‘(Vr’tr)
' o,

the Helmholtz free energy can be obtained as

f(tr’vr’):f(tro’er’)_ fpr(vr’tr)dvr :

The Helmholtz free energy is related to the Gibbs free energy as
gt,,p)=ft.v)+pvV,.

According to the Maxwell construction from the Gibbs free energy, we have
81 =83

at the point a (p, = p,, v, =v,) and point e ( p, = p,, v, =v;), where

g =h+pW, at the point a,
g, =f,+Dpv;, at the point e.
In the diagram of f'vs v, the point a is located at the co-ordinate (v1, f1), while the point e is located at the

co-ordinate (v3, f3). Note that the point a and point b are on the coexistence line in the p: vs v; diagram for
#<1. The straight line (double-tangent line) connecting the points @ and e can be given by

Jor =1 +(MJ(V_V1)-

V3=V
We note that
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afDT :(ﬁ_ﬁj:_pl'

ov vy =V,

The reduced pressure p; corresponds to a negative of the slope of the straight line (the double-tangent line)
connecting the point a and the point e. We note that

82](‘ZZDT — 0 .
ov
We make a plot of the reduced Helmholtz free energy as a function of the reduced volume v: at fixed
temperature (in this case # = 0.85). The double-tangent line is denoted by the straight line connecting the
points a and e. The tangential line at the point a coincides with that at the point e. Note that the Helmholtz

free energy at fixed t# is higher than the corresponding double-tangent line between vi and vs. This means
that this double tangent line is the coexistence line between the points a and e.

—04101

x f(t,v,)
-0.15
-0.20+

-0.25¢

-0.301

035
Vf
05 10 15 20 25 3.0 35 40
Fig.30 The isothermal Helmholtz energy f as a function of the reduced volume. # = 0.85. The

Helmholtz free energy has two inflection points at the point b and the point d below the
critical point. The double-tangent line (the straight line a-e) represents coexisting vapor
and liquid phases. The Helmholtz free energy with double-tangent line (the path a-e) is
lower than the metastable (the path a-b and the path d-e) and unstable part (the path b-c-d)
between vi (the point a) and v3 (the point e); double-tangent construction. vi = 0.55336. v3
=3.12764. p1 = 0.504492.
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b —0.15¢ f(tr,Vr)
C

-0.20

-0.25¢

-0.30}

-0.35+

(a)

-0121

—0.13’f(t,,V,)

-0.14

-0.15+

-0.16+

=017

018 . . . . . . )
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

(b)
Fig.31 (a) and (b)

Tangential line (green line) of the Helmholtz free energy vs v, corresponding to — p; at fixed
reduced temperature ¢ (= 0.8, in this case). The double-tangent line (black line) is the co-existence
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curve with p, = p, between v: = v| (the state a) and vs (the state e). The tangential line at the point
a, coincides with that at the point e. vi = 0.517409. v» = 1.20827. v3 = 4.17246.

— Pyl 0

f(t,vr)

Fig.32 f(t,.,v,) vs v at each fixed reduced temperature # (. = 0.75, 0.80, 0.85, 0.90, and 0.95).

The double-tangent lines are also denoted by the black straight lines connecting between
the point @ and the point e.

(b) Pressure as a function of the reduced volume
The reduced pressure is given by

(&
pr B [avr Jt, ’

using the Helmholtz free energy. The reduced pressure p: is plotted as a function of the reduced volume
(- = 0.85). Above the critical point, as v; increases, the Helmholtz free energy decreases, corresponding
to the monotonic decrease in p: vs vi. This is a typical of any temperature above the critical point. Below
the critical point, we see that the path / (liquid)-a and the path e-g (gas) in which the reduced pressure
decreases monotonically as v: increases. These are joined by a straight line. The path a-e touching the path
[-a at the point a and touching the path e-g at the point e. The three portions correspond to the liquid phase,
to the gas phase, and to a two-phase liquid-gas system. This typically happens when #<1. Note that the
path a-b represents superheated liquid. The path d-e represent super-cooled vapor. We see that all states
represented by these portions of curves are metastable.
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0.101

pr=-df(t,,v,)dv, t,=0.85

0.08 -

0.06 -

0.04r

0.021

0.5 110 115 2‘.0 215 310 315 410
Fig.33 p, =—(0f 10w, )t, as a function of vr. #: = 0.85. The path a-c-e is the coexistence boundary.
(¢) Metastable state and unstable state
14
1.2 * d2f(t,,v,)dv, ?
1 0
08

o~
or

0.4f

02l t.=0.85

Vr

40

M
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Fig.34 (sz/ﬁvrz)t’_ as a function of vr. # = 0.85. (azf/avf)

) <0 for the path b-c-d, indicating
that the curve f'vs v is concave upwards (unstable). (82 f/ avf),,_ >0 for the path a-b and

path d-e, indicating that the curve is concave downwards (metastable).

The Helmholtz free energy of the superheated liquid (the path a-b) or the supersaturated vapor (the path
d-e) is greater than that for the double-tangent line. The portions curve a-b and d-e are in the metastable
state. They have curvature concave upwards so that

v (21),
ov avrz ’

I

because of the definition of mathematics,

2
Fig.35 [8 JZJ >0, (concave downwards, or convex upwards),
vr
. ' f
Fig.36 P <0, (concave upwards, or convex downwards).

We note that the path b-c-d has a curvature concave downwards. This would correspond to a positive
value of

56



@._ (O]
ov avrz ’

r

leading to unstable states. Such states are not realized.
Since the tangent line f(v,) maintains the same slope between vi and v3, the pressure remains constant

between v; and vs:

o)) __
Sl

In other words, the line connecting points on the p —v,_ plot is horizontal and the two coexistence phases

are in thermal equilibrium. For each temperature below # = 1, the phase transformation occurs at a well-
defined pressure pi, the so-called vapor pressure. Two stable branches g (gas)-e-d and b-a-! (liquid)
correspond to different phases: the branch g-e-d (gas phase) and the branch b-a-/ (liquid phase). The
branch e-c-a is the co-existence line between the gas phase and liquid phase. The branch e-d is a metastable
gas phase, while the branch b-a is a metastable liquid phase.

(d) Difference Af = f— [,

Here we define as
Af = A.](‘(l‘r’vr) = f(tr’vr)_fDT(tr’vr) s
where f,, is given by

f3_

fDT(thr) :fl +

(v, =v,),
Vi =W

for the double-tangent line. Since 8°f,,(¢,,v.)/v,” =0, it follows that
O*Nf(t,,v) v =821 (t,,v,)] v’

The plots of Af vs vr is shown for the range (vi<v<v3), where # is changed as a parameter. We note that
the difference Af is equal to zero at v; = vi and vs. It shows a peak at v = vo. We show the deviation Af
vs v between vi and v3 at . = 0.95. The points a (vv=v1), b, ¢ (vv=2), d, and e (v:= v3), are shown in this

figure. 6>Af /dv,”>0 for the path a-b (the superheated state) and the path d-e (the super-cooled state).
d>Af 1 0v,>< 0 for the path b-c-d (unstable state).
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Fig.37
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0.0010+
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Af

t,=0.95

Vr

0.0000
0.

0.8 1.0 1.2 14 1.6 1.8

(a), (b), and (c) The deviation Af vs v: between v and v3 at # = 0.95. The points a (v:=v1),
b, ¢ (v=m2), d, and e (v:= vs), are shown in this figure. 8>Af /dv,>> 0 for the path a-b (the

superheated state) and the path d-e (the super-cooled state). 6>Af /dv,”< 0 for the path b-
c-d (unstable state).
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-0.25¢
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Fig.38 f@.,v), f@¢.v,), f@.,v,), f.,v,,),and f(¢,,v,) asa function of #.. Note that vi, vmi,

V2, Vm3, and v3 are dependent on # according to Maxwell construction or double-tangent
construction.

(e) The lever rule for the Helmholtz free energy
The straight line connecting the point @ and the point e is given by

f=fir (f} fj(v W,

Vi =W

where v,<v<v;,. This can be written as
Lizh ), | fioh,
f — fi ( 3 1 1 J3 J1
Vi =V, Vi =V,

V=V v—v,
:fl("z _Vl}Lf{Vz _VJ

S =04+61,

or

corresponding to the lever rule for the reduce volume, where

V, —V V—v
3 _ 1
6, = , 0, =—1,

Vi =V Vi =V

f can be written as

f=(v3_va1 (V “Jf; S Y AT
V3=V V3 V3=V

which is the straight line passing through the two points (v, f;) and (v;, f;) . We recognize this as the

common tangent line.

(gj :f;_fi :_pla

ov v, =V,
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and

o"f _0
o' ) '

® Summary
According to the Maxwell relation

__[9@.v)
pe{Te2).

r

the Helmholtz free energy can be obtained as the area under the isotherm:

f.v) == [pdv,.

isotherm

Note that vi and v3 are defined by the double-tangent construction. At any point along the tangent, the
Helmholtz free energy is a linear combination of those at a and e, and thus represent a mixture of the

liquid and gas phases. Note that the value of f(¢,,v,) for v, <v_<v; is larger than that on the double

tangent line, as is obvious from the graphical construction. Thus the phase-separated state is the
equilibrium state. The states a and e are defined by the condition

p = o __ 9 , (equal pressure)
ov, ov,
S _F _fi-h

(common tangent)

b

ov, 0v; v,—V
I pav. =p,(v;—Vv,), (Maxwell construction)

Vi

or
V3

1p, = pJav, =0.

Vi
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For local stability at any point the curve f(7,v) must always lie above its tangent, and for global stability
this tangent must not cut the primitive f(7,v) curve at any other point. If it does, the substance will split

into a mixture of two phases with values of volume vi, v2 corresponding to the two points of contact of
the tangent. The double-contact tangent corresponds to the co-existence of two phases in equilibrium.

11. Critical behavior of v1 and v; around the critical point
We make a plot of the values of characteristic reduced volumes (vi, i, vm3, and v3) as a function of
t, for t:<1.

1.00 } t,. °
095
I Vim3 V3
0.90 | metastable
0.85 metgstable unstable
%
0.80t—~4— : : : 5
0.5 1.0 1.5 2.0
Fig.39 t: VS Vi, & VS Vi, & VS Vm3, and t; vs v3 with v; and v3 lines (bimodal lines) and vm1 and vi3 lines

(spinodal lines).
12.  Lever rule for the reduced volume in the coexistence line
At the point e the substance is entirely in the gas phase with volume vi, at the point q, it is entirely in

the liquid phase with volume vi. At any point on the line a-c-e (the coexistence line), the reduced volume
can be described by

v=0y, +06,,
using the lever rule, where 6 is the fraction of the liquid phase and & is the fraction of the gas phase,
6+06,=1.

Then we have
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V., —V
—_ 3 —
0 = : 0, =

V=V Vi—V

V=

Forv=v,, 6 =1and 6,=0 (the pure liquid phase).
Forv=v,, 6 =0and 6,=1. (the pure gas phase).

[ S

Liquj

A y B —_—
9 - . ——==f__ 1+ -085
A, e
Gas.
oo/t > >
/—Vv V-V
V3—Vy -
02
1 1 2 2 30 " 3 4
Fig.40 Lever rule (# = 0.85 in this case). The reduced volume v on the coexistence line between

vi and v3, v= 6y, + 0,v,. 6 is the fraction of the liquid phase and 6 is the fraction of the
gas phase.

13.  van der Waals equation with reduced density

(a) Law of the corresponding states
We consider the law of the corresponding states with the reduced density defined by

1
v=—
Yo,

We start with the law of corresponding state,

We introduce a reduced density variable defined by
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pr:_'

<

Then we have

8t
pr = _3pr2 + r—pr .
3-p,
(b) Maxwell construction
On the co-existence curve, we have

D, =D =D at t.=t=1+r7,
where
1 1
pPr=— Py =—>
Vi Vs
with
p>1>py.

From the condition p, = p, = p,, or,

P, = _3p12 + 816 =-3p * 4 81p,
3-p 3-p

we get the expression of 7 as
1
t=1+7 =§(3—p1)(3—p3)(p1 +05).

Using this 7, we get
P =pos3=p = p3).
The Maxwell’s construction can be expressed by
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I, =1,,

where /1 and /> are the area of the region (a-b-c-d-e) and the area of the region (a-c-e) of the co-existence
line,

1= [ Psdp, ==3p, = p) =5 (3= p)B = p)(py + p)WI 2= L)
0 Pr 0.G=py)

L=p P22 =p p.G-p - p )Ly =3 = p, - p)(p - ps).

1773 1773

Then we have

=3(pi= ) =3B PG PP+ )l [%] (B=p = PP~ p2)
ot

(6= P = PP = )= 5 (3= p)G= (o + ps)ln[%] -
Suppose that

=144, py=1-A

where 0 <A, <<1 and 0<A, <<1. We substitute these forms into the Maxwell’s construction, and
expand each side in powers of A, and A,. The coefficients up to the third-order in the left-hand side is

zero. The coefficient of the fourth order in the left-hand side is given by

—%AA;+%&A3

1 9

which is equal to zero. Thus we have

leading to the symmetry of the van der Waals coexistence line near the critical point.
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() Critical behavior for the difference (p, — p;) as . — 1 along the coexistence curve.

1—t=1—%<3—p1>(3—p3>(p1 +py)

= 1—%(2— ADC+A)2Z+A +A))

1
zZ(Al2 "'As2 —AAy)
We then let A =A, =A. We get
l—t=—rzlA2
4

or
A — 2(_2_)1/2 — 281/2

We define the quantity (p, — p;) = A, + A, =2A as the order parameter of the gas-liquid critical point. The

o : 1 : :
critical exponent is S = 5 a manifestation of the mean-field nature of the van der Waals theory.

[ Lo=103-p4

0.25]

0.20

0.15;

0.10}

0.05¢
L 1 L L L L 1 L L L L 1 L L L L 1 \At\:1\_t,\' 1
0.001 0.002 0.003 0.004 0.005

Fig.50 (p,—p;)=A,+A, =2A as a function of Ar—1-1% .
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The result of the least squares fitting:
P =Py = Piguia = Pras = A7) = A&7,
for #: = 0.995 — 1. The least squares fit of the data yields
A =3.983 and £ = 0.4994,
which is in good agreement with the mean field exponent (S= 1/2).
115} _
110; TTT -

1.05 |

1.00. mﬂh 2
| %

095 JIe
0.90 ____________-
i\--\--\--\- L p\3 L L L L 1 L L L L 1 L L L L 1 L L L L 1 L
0.996 0.997 0.998 0.999 1.000
Fig.41 o1 (liquid) vs # and p3 (gas) vs # for t¢, <1. The shaded portion represents a coexistence
region.
((Mathematica))
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8t
Clear["Global *"]; p0 = 3—: -3 x*; p01=p0 /. x> x1;
p03=p0 /. x-» x3;

seql = Solve[p01l = p03, t]
{{ta% (-3 +x1) (-3 + x3) (x1+x3)}}

p011 =p01 /. seql[[1]] // FullSimplify
-x1x3 (-3 + x1+ x3)

eql =

0
Integrate [ p_2 , {x, x3, x1}, GenerateConditions -» False] //
X

Simplify; eqll=eql /. seql[[1]];

pO01l1

x1 x3

rulel = {x1->1+dl, x3-»>1-d3};

eq3 =eg2 /. rulel // Series[#, {d1, 0, 3}, {d3, 0, 3}] & //
FullSimplify

eq2 = ( (%1 - x3)) - eqll // FullSimplify

3433 3433
O[d3]4+-(— ; 4—O[d3]4) dl4—( 4—O[d3]4j d1? +
3d3 34d3?
T +O[d3]4)dl3+o[dl]4

Coefficient[eq3, {d3%d1l, d1°d3}]

33

(d)

Phase diagram of p, vs reduced density
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Fig.52 Pressure vs density at fixed temperature for carbon dioxide (CO»).

http:/www.warpig.com/paintball/technical/gasses/co2pv.gif

0.8

0.6

0.4

0.2

“

0.5

Fig.42 p, vs p, =1/v_phase diagram where ¢ is fixed as # = 0.87, 0.90, 0.93, 0.96, and 0.98.

In the co-ordinates (# — vr), when there is a critical point, the equilibrium diagram appears as shown in this
Fig. As the rediuced temperature tr approaches its critical value tr = 1, the reduced volumes of the liquid
phase and gas phase in equilibrium becomes closer, and at the critical point, these phases coincide.

For the liquid-vapor transition, as the critical temperature was approached from below (7<T), the theory
predicted that the order parameter is expressed by
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pl_p3 Oc(l_tr)ﬁ7

1 - .
with #= 1/2. The average 5( P, + p;) is denoted by the blue line (so called the rectilinear diameter: locus of

the mid-point). It is seen to trace the straight line.

10 ¢, 9
0.9

0.8+ P3 Pm3

0.7+
0.6+
0'50.70‘ o ‘015‘ - ‘1.0‘ o ‘1.5‘ - ‘2.0‘ - ‘2.5
Fig.43 £ VS P1, t VS Pmi, t VS pu3, and t: vs ps. The average (p, + p,)/2 is denoted by the blue line (so

called the rectilinear diameter).

1 1 1 1
((Note)) Definition. Py =—. P ="——> Py =—. p=—,
Vs v v 12

m3 ml

K
[ ]
d

P ——
i S ={}
’__/"'" \

o L G L
1.0 12 14 16
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Fig.44 The points a; (v, p,), b (Vm1, pm1), ¢; (v, p), d (Vm3, p m3), and e; (v;, p,), in the pr-v;

plane. # = 0.98.

1.00

a b

o]
L3
b

o

a
+
0.95 nﬁ;‘? ¥ %
\

w

0.90

0.83

Reduced saturation temperature, T/7T,,

1
4 | !
0.80
¢
g
!

075 4
0.70 |
\ +
\
0.65 y
\
+ \] .
0.60 : Y
T 1\ +|\°
0.55 !

0 02 04 06 08 10 12 14 16 18 20 22 24 26

Reduced saturation density. p/p.,
Fig.45 Reduced densities of co-existing liquid and gas phases. (E.A. Guggenheim, Thermodynamics).

The mean reduced density (p, + p,)/2 is seen to trace the straight line shown in dotted in this
diagram.

14. Super-heated state and super-cooled state

Here we show the phase diagram of v; vs # and # vs v, where # is fixed. In the diagram of v: vs ¢, the
vertical line (the path a-c-e) is the coexistence line in thermal equilibrium
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0.90 0.92 0.94 0.96 0.98 1.00

Fig.46 Phase diagram of v; vs # where pr is changed as a parameter. The bimodal lines are denoted
by red and blue lines. The spinodal lines are denoted by yellow and light blue lines.
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3.0+ ‘
2.5+
Gas
20t p,=0.80
A

Super—cooled state

1.5¢
d
1.0} C\ K
b
A V=

— | a Super-heated state

05} Liquid t
O.é5 O.éO O.§5 1.60
Fig.47 Phase diagram of v: vs # with p; = 0.80. The super-heated state (a—b) and the super-cooled

state (e—d), and the coexistence line are shown. The binodal lines are denoted by the red
and blue lines. The spinodal lines are denoted by yellow (A-K) and light blue lines (B-K).
The coexistence line (equilibrium liquid and gas phases) is denoted by the vertical red line
(a-c-e).

In the viewpoint of experiments, the thermal equilibrium is kept in the system for the sufficiently slow
cooling, leading to the transition along the path Gas-g-e-c-a-I-liquid) including the coexistence line (path
e-c-a). On the contrary, the rapid cooling (quenching) of the system from sufficiently high temperature
side (the gas phase) promotes the super-cooled state (the metastable state, the path e-d). In this case, the
system follows the path Gas-g-e-d. When a liquid first nucleates as small droplet on such a cooling, the
surface to volume ratio is large, and the surface tension (surface energy) tends to prevent the liquid droplets
from forming the bulk liquid phase. On further cooling below the temperature of the state d, there occurs
the transition from the state d (metastable state) to the bulk liquid phase (the state /).

The thermal equilibrium is kept in the system for the sufficiently slow heating, leading to the transition
along the path Liquid-/-a-c-a-g-gas) including the coexistence line (path a-c-¢). On the other hand, the
rapid heating promotes the super-heated state (metastable states, the path a-b). The system follows the
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path Liquid-/-a-b on the rapid increase of temperature. On further heating above the temperature of the
state b, there occurs the transition from the state b (metastable state) to the bulk gas phase (the state g).

D300

ey

095

TN

0.5 1.0 1.5 20

Fig.48 Phase diagram of # vs vr where p; is changed as a parameter. The super-heated state and
the super-cooled state, and the coexistence line are shown for p: = 0.80.
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0.5 1.0 1.5 2.0 25 3.0
Fig.49 Phase diagram of # vs v: with pr = 0.80. The super-heated state and the super-cooled state,

and the coexistence line are shown for p; = 0.80. The binodal lines are denoted by the red
line and blue line. The spinodal lines are denoted by yellow (K-A) and light blue lines (K-
B). The coexistence line (equilibrium liquid and gas phases) is denoted by the horizontal
red line (path a-c-e).

((Note)) Dynamics of First order phase transition (by Koch)
nucleation in the metastable state, and spinodal decomposition in the unstable state

The supersaturated vapor of a van der Waals system is a typical example of a metastable state. It may
decay because of localized density fluctuations. These fluctuations must have a large amplitude and
exceed a certain spatial extension. They are commonly called the critical droplets. The spontaneous
formation of critical droplets is a typical example of a hetero-phase fluctuation. Localized liquid regions
appear within the supersaturated vapor phase. These hetero-phase fluctuations are the origin of the finite
lifetime of metastable states in equilibrium and non-equilibrium systems.

On the other hand, even very small fluctuations are sufficient to initiate the decay of unstable states.
A spatially homogeneous system within the spinodal region of its phase diagram decomposes because of
infinitesimally small density fluctuations. This is the process of spinodal decomposition. Even though they
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may be of infinitesimally small amplitude, these density fluctuation can intiate spinodal decomposition,
provided they exceed a critical wavelength. This condition is connected with the increasing surface energy
by forming a spatially inhomogeneous distribution. The surface energy has to be compensated by the
energy gained by approaching the new equilibrium. The critical wavelength gives rise to the appearance
of a characteristic precipitation pattern in the early stages of spinodal decomposition.

15.  Clapeyron equation (or Clausius-Clapeyron equation

We make a plot of the reduced pressure p: as a function of reduced temperature #1. The values of #
and p; are listed in the APPENDIX. The critical point is at # = 1 and p: = 1. The red line denotes the co-
existence boundary between the gas phase (lower p1) and the liquid phase (higher p1).

Critical poin

Fig.50 Phase diagram of p1 vs 1, where p1 for each 71 is determined from the Maxwell construction.
The values of p1 for each reduced temperature #1 are listed in the APPENDIX.

: Critical point
10r P

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
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Fig.51 Phase diagram of p; vs #1. The point A and the point B are in the liquid phase, while the
point A’ and point B’ are in the gas phase. The critical line is denoted by the red line.

Here we discuss the Clapeyron equation (or Clausius-Clapeyron) equation. The change of entropy
between the liquid phase and the gas phase can be determined from this equation. To this end, we consider

the four states; states 4 and 4’ are coincident but corresponds to different phases, and states B and B’ are
similar.

dP=P,~P,=P,~P,,  dT=Ty~T,=T,~T,.

The slope of the curve is Z—; . The phase equilibrium requires that

Thus we get

G, -Gy, =G, -Gy
But

G,—Gy=-8dT +VdP,

G, —Gp=-8'dT +V'dP.
Then we have

—SdT +VdP =-S'dT +V'dP,
or

dP_5-5 _AS
dT  V'-V AV’

The latent heat is given by L =TAS . Then we have
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dP L .
| (Clapeyron equation).
16. The discontinuity of entropy on the coexistance line (the latent heat)

Here we discuss the entropy of the system on the co-existence line between the gas phase and liquid
phase in the P-V phase diagram with fixed temperature. The original discussions were given by A.B.
Pippard (Elements of Classical Thermodynamics, p.53 Fig.10) and by H.B. Callen (Thermodynamics,
p.157, Fig.9.8)

We consider the Carnot cycle, consisting of the two isothermal processes and two adiabatic processes
in the P-V phase diagram. I is the total work done on the system during the process. For convenience use
W instead of W (=—W ). W is the work done on the system, while /¥ is the work done by the system.

W,=0,-0,

Q

H
—y W =0 -QL

QL

Fig.52 Carnot cycle.

We have the relation

D _On

Carnot cycle
T T, ( ycle)

The efficiency ¢r is defined as

:£=QH_QL :1_T_L

&g

It is dependent only on the temperatures 7n and 71.. The work Ws is equal to the area of the Carnot cycle.
Then we have
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W, 64 or
0, 0 T

where
T,-T, =0T, T,=T,
W. =04, o, =0

In the 7 vs § diagram, the Carnot cycle is formed of the rectangle, consisting of the two isothermal
processes and two adiabatic processes;

W,=84=5T8,  0,=T,8 (Q=T&5)

Then we have

od_or
O T
The entropy is given by
ss=A
oT
Y
w
St
e
4
5
i
A~
0

Volume
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Fig.53 Carnot cycle (P-V phase diagram), which consists of two isothermal processes and two
adiabatic processes.

Qu
a b
| —e —1;
<
g
S :
= :
©
.
; 1 5
~ d ¢
QL
Entropy S
Fig.54 Carnot cycle in the 7-S plane, consisting of two isothermal processes and two adiabatic

processces.
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090

Fig.55 (a) (b) Carnot cycle for the van der Waals gas. The two neighboring isotherms of a liquid-gas co-
existence. The path AD and path BC may not be the adiabatic path. This effect can be
negligible since the temperature difference is very small.

((A.B. Pippard)) The following discussion is made by Pippard Elements of Classical Thermodynamics.
We shall now examine briefly a graphical method which is sometimes used to solve elementary

thermodynamic problems. The substance (van der Waals gas) considered is imagined taken around a

Carnot cycle between two neighboring temperatures 7 and 7 — o7 . If the area of the cycle in the indicator

diagram is o4 and the heat absorbed at 7}, = T along the path 4-B (isothermal process) is Q,,, then the
heat given out at 7, =T — OT along the path C-D (isothermal process) is Q,. This process is a sort of

Carnot cycle.

9, 0.
TH TL

The work done by the system is
Wo=0,-0,=M

which corresponds to the area (94 ) enclosed by the closed path (A-B-C-D-A). Then we have

T-oT

0 T

b 9

0 _0-d oA ol
T
where Q, =0, 0, =Q-A, T, =T,and T, =T - T .
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The Carnot cycle consists of two long isotherms 4B and CD and two short adiabatic processes B-C and
D-A. We suppose the variation from 4 to B to correspond to the evaporation at constant pressure P of unit
mass of liquid, necessitating the absorption of heat equal to the latent heat per unit mass /. To find the area
of the cycle we note that the length AB is V, -V, =V, —V, the difference in volume between vapor and

liquid, while the vertical width of the Carnot cycle is

o= (42 Yo
dT

where P is the equilibrium vapor pressure. Thus we have
SA=(V,~V)P=(V, - V,)(d—PjéT .
dT
Any difference in slope of AD and BC becomes negligible as 6" — 0. Finally we get
oT dP
A=—0Q=V,-V,)| — |oT
om0, )

or

@& M
ar T1W,-V)
which is the Clapeyron equation.
In the phase diagram (7 vs S plane), we have
Oy =TyAS, O, =TAS (2)

where 7, =T, T, =T - 0T , and Q,, = Q. The work done by the system is
A=W, =§PdV = {TdS = 5TAS

since
§dE = §1ds —fPdv =0

From Egs.(1) and (2) we have
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0 dp By, | dp,
AS=?=(V;—V,)ﬁ=N(v3—v1) 7 2

4 r

or

We make a plot of As/k, a s function of #,

Note that we have the tables for the values of vi, v3, and p1 for various tr below the critical temperatures.
dp,(t,)
dt

r

We can evaluate the derivative using the derivative of the continuous function p, (¢.) which is

constructed by using the interpolation of the pressure p, (z.) at the discrete values. Using the Mathematica,

we calculate

251

0.88 0.90 092 0.94 0.96 0.98 1.00
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0.96 0.97 0.98 0.99 1.00

Fig.56 (a), (b) Zﬁ as a function of #. The entropy decreases with increasing # and reduces to zero at the
B

critical temperature.

As we approach T'— T, the discontinuity diminishes and S, — S, - At the critical point we have a

second order phase transition. Above the critical point, there is no sharp distinction between the gas phase
and the liquid phase.

Note that [ZIZ FJ is proportional to # for ¢, <1 as shown below in the Mathematica. So the critical

behavior of As/k, is the same as that of the difference (v, —v,).

Here we note that

.| __ 8 ~4 around ¢,~1.
o, ), 3v,-1

Then we have
As 3 dp (t 3 |
= g I = S ) e =6 =66

In fact the entropy corresponds to the order parameter with the critical exponent (S = 1/2).

((Callen H.B.)) The following discussion was made by Callen (Thermodynamics).
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The change of entropy can be also obtained as follows. From the definition, the change of entropy is
given by

M:j(j—ild%

Using the Maxwell’s relation: (8_5‘) = (8—})) , we get
ov ), \oT),

o5=Iar ) <[

along the isotherm path (a-c-b), which is the same as the result derived by Pippard. The latent heat is

oP
TAS=T|— | (V, -V,
(aTjV(g )

0,
=PJ{§J M, (v, —w)

r/y

0
= Nevct{ ;jv(vs -)

The latent heat is obtained as

ot

r/Jy

TAs =evctr[aa’j} (- v) =§k3ntr(8”rj vy =),

r/Jy

((Mathematica))
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W |oo
ct

+

Clear["Global *"]; p[t_, v_ ] :=

v oyl
3
Eql[t , vl , v3 ] :=plt, vi] =p[t, v3];
Eq2[t , vl _, v3 ] =
_3 + 3 + 8 t (-Log[-1+ 3vl] + Log[-1+ 3v3]) ==
vi v3 3

plt, v1] (v3-vl);
initial[t /; t<1] :=
Module[{vlm, v2m, v3m, vl, v2, v3, v, vi, eqll, eql2,

eq2l, eq22, tl1}, tl=t¢;
eqll = D[p[tl, v], v] // Simplify;
egl2 = NSolve[eqll == 0, v];
vim=v /.eql2[[1]]; vBm=v /. eql2[[2]];
vim + v3m] v] )

> ’ ;

eg22 = Sort[{v /. eq21[[1]], v/.eqg21[[2]], v/.eqg21[[3]]},
#1 < #2 &];

vi = {eq22[[1]], eq22[[3]11}]

eq2l = NSolve[p[tl, v] == p[tl,

LG[t /; t<1] := Module[{tl, eql, vl, v3, v1l, v13, pll},

tl=¢t;

{v1ll, v13} = initial[tl];

eqgl = FindRoot[Evaluate[{Eql[t, vl, v3], Eqg2[t, vl, v3]}],
{vl, v11}, {v3, v13}];

vil=vl/.eql[[1]]:

vi3=v3/.eql[[2]];

pll =p[tl, v11l];

{tl, pll, v11, v13}]
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hl = Table[LG[t], {t, 0.85, 1, 0.0005}];
hl //
TableForm|[#, TableHeadings -
{None, {"tr", "p1", "v1", "v3"}}] &;

hl = Table[{LG[t][[1]], LG[tI[[2]]}, {t, O.
gl = Table[{LG[t] [[1]], LG[t] [[3]]}, {t, O.
g2 = Table[{LG[t] [[1]], LG[t][[4]1]1}, {t, O.
f1l = Interpolation[hl]; £f1D =D[£f1[x], x];
gll = Interpolation[gl];

gl2 = Interpolation[g2] ;

k1l = Plot[% £f1'[x] (gl2[x] -gll[x]), {x, O.

PlotStyle -» {Red, Thick}] ;
k12 =
Graphics|
{Text[Style["t,", Black, Italic, 15], {O.
Text[Style["As/kg", Black, Italic, 15],
Show[kll, kl12]

88

95,

1, 0.0005}];
1, 0.0005}];
1, 0.0005}];

1},

998, 0.1}17,
{0.953, 1.2}]}1;



0.96 0.97 0.98

k13 = Plot[ £f1'[x] , {x, 0.86, 1}, PlotStyle - {Red, Thick}]

40/
8
36
a4
2
30

2.8/

0.99

0.86 0.88 0.90 0.92 0.4

23. Summary
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Since the discovery of the van der Waals equation of state (1873), there have been so many excellent
articles on the thermodynamic properties of van der Waals systems. Nevertheless, in our opinion, the

essential points of the phase diagram of p: vs vr at various temperatures have not been systematically and
extensively reported, partly because of restricted spaces in putting results of numerical calculations. It is
well known that the van der Waals theory is one of the best examples of the mean field theory. The nature
of the attractive interaction between particles changes drastically from short-range order to long range
order below the critical temperature. The critical exponents satisfies the relation; « +2/4+ y =2 predicted

from the mean-field theory. The van der Waals systems provides one of typical examples for the phase
transition and the critical behavior of the second order phase transition at the critical point as well as the
first order phase transition on the coexistence boundary. The coexistence line can be determined from
Maxwell construction and the double-tangent construction Because of the strong-nonlinear nature in the
van der Waals equation of state below the critical point, nevertheless, it is sometimes hard for students
and even researchers to understand the essential properties of the coexistence line, critical behaviors, and
SO on.

In spite of very interesting systems for us, our understanding is not sufficient on the nature of the
coexistence line, partly because of nonlinearity in the van der Waals equation of state. We do not have a
Mathematica program available for the evaluation of Maxwell construction. Recently we have found the
Mathematica program (by P. Abbot) for solving the van der Waals equation of state below the critical
point, which uses the FindRoot program with appropriate boundary (initial) conditions. Here we have
revised the program, which is more convenient to our use, although the essential points are the same.
Thanks to this program, it is much easier for one to understand the nonlinear effect of the van der Waals
equation of state.

During this work, we also noticed the article of Johnston on the thermodynamic properties of the van
der Waals fluids in Los Alamos archive. This article is very useful to our understanding on the physics of
van der Waals system. Here we have undertaken systematic numerical calculations on the critical
behaviors and phase transitions of the van der Waals system near the critical point. Using the Mathematica,
program (which we show), we have no difficulty in evaluating the Maxwell construction based on the
Gibbs free energy and the double-tangent construction based on the Helmholtz free energy. So we succeed
in getting the visualization of the over-all phase diagram of the van der Waals equation of state. For
convenience, here we show our Mathematica programs how to determine the numerical values of vi, vs,
p1, and so on for each reduced temperature. We also show the Mathematica programs using the
ParametricPlot, Plot3D, and ContourPlot to get the thermodynamic potentials of the Gibbs free energy
and Helmbholt. It is our hope that that this article may be useful for students and researchers studying the
thermodynamic properties of these systems, although there is nothing new from a view point of research.
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((Nomenclature)

Adiabatic (@ =—-r)

Adiabatic compressibility

Adiabatic expansion

Binodal line

Bubble point: Vi

Carnot circle

Clapeyron equation (or Clausius-Clapeyron equation)
Coexistence boundary

Coexistence curve

Compressibility

Concave downwards (concave upwards)
Concave bump

Corresponding state

Critical isobar (7 =0

Critical isochore (@w= 0)

Critical isotherm (7= 0)

Critical point

Critical pressure

Critical volume

Cusp

Double-tangent line (Helmholtz free energy)
Double-tangent construction

Entropy
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First-order phase transition
Gibbs free energy
Helmholtz free energy
Internal energy

Isentropic

Isotherm

Isothermal compressibility
Latent heat

Law of corresponding state
Legendre transformation
Lever rule volume, Helmholtz free energy
Maxwell construction
Maxwell relation
Mean-field exponent
Metastable gas

Metastable liquid
Metastable state

Order parameter

Primitive curve

Rectilinear diameter: locus of the mid-point
Reduced pressure D,

Reduced temperature £,

Reduced volume v,

Saturation point: V3

Scaling

Scaling hypothesis

Second-order transition

Specific heat at constant pressure

Specific heat at constant volume

Spinodal decomposition

Spinodal line (AK, BK lines)
Super-heated liquid

Super-cooled vapor

Thermal expansion

Thermodynamically invisible bow tie (Gibbs free energy)
Uustable state

Universality

van der Waals gas

van der Waals fluid

van der Waals system
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(a)

(b)

Scaled van der Waals equation

vr=l=l+a), V:K, v, =3b
v, N

t,=—=1+7, T, = 8a
c 27k,b
—£—1+7r 4

P=p ’ e

Pv, 3

k,T. 8

a 27

—=—k,T
8 B ¢

_ 3

P vr2 v -1

(an 1 (ov,
K,=—— -
V\oP Pv,\p, ),

Coexistence line (approximation)

V _1 2| |1/2 | |_147| |3/2

_1+2| |1/2 | | 147| |3/2

1 18
E(v1 +v,) =1 +?|r| +

—(v3 v) = 2| |1/2 147||3/2
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p =1- 4|r| +%|r|2 +....

(¢) Thermodynamic potential

U=E

dE =TdS — PdV + udN

F=E-ST F=F(®V,T,N)
G=F+PV G=G(P,T,N)

dF =—PdV — SdT + pdN

with
p- {Mj - _( 5F(V,T)j
o )iy or ),
dG =-SdT +VdP + udN
with

Vo (8G(P,T)j os- _(8G(P,T)j
opP T,N or P,N

APPENDIX-II

Table The co-ordinates of the point a, b, ¢, d, and e in the p-v; phase diagram for each reduced
temperature #. = #1 (<1). a: (v1, p1), b: (Vm1, pm1), ¢: (v2, p1), d: (vm3, pm3), and e: (vs, p1). Note that
pmi 1s negative for 11<0.843, due to the intrinsic structure of the van der Waals equation of state.
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tl pl vl pml vml w2 pm3 vm3 v3

0.6 0.0868693 0.432609 -2.54746 0.535945 1.59067 0.266736 2.95057 16.7285
0.61 0.0955029 0.435602 -2.4171 0.539881 1.56434 0.277055 2.88557 15.366
0.62 0.104701 0.438683 -2.28923 0.543893 1.53902 0.287635 2.82247 14.1466
0.63 0.11448 0.441859 -2.16379 0.547982 1.51466 0.298483 2.76118 13.0519
0.64 0.124854 0.445133 -2.04074 0.552155 1.49119 0.309604 2.70161 12.0663
0.65 0.135841 0.448511 -1.92005 0.556415 1.46859 0.321005 2.64365 11.1763
0.66 0.147454 0.452 -1.80166 0.560767 1.448679 0.332691 2.58724 10.3705
0.67 0.159708 0.455605 -1.68553 0.565215 1.42577 0.34467 2.5323 9.63903
0.68 0.172618 0.459334 -1.57164 0.569767 1.40549 0.356947 2.47874 8.97341
0.69 0.186197 0.463194 -1.45995 0.574427 1.38591 0.369532 2.4265 8.36625
0.7 0.200458 0.467193 -1.35042 0.579201 1.36699 0.38243 2.37551 7.81114
0.71 0.215416 0.471341 -1.24302 0.584098 1.3487 0.39565 2.32571 7.30248
0.72 0.231083 0.475647 -1.13772 0.589125 1.33102 0.409201 2.27704 6.83537
0.73 0.247471 0.480122 -1.03451 0.594289 1.31392 0.423092 2.22942 6.40554
0.74 0.264592 0.484779 -0.933339 0.5996 1.29736 0.437333 2.18282 6.00921
0.75 0.282459 0.489631 -0.834198 0.605069 1.28133 0.451933 2.1371¢ 5.64305
0.76 0.301082 0.494693 -0.737063 0.610706 1.26508 0.466903 2.0924 5.30412
0.77 0.320473 0.499982 -0.641912 0.616524 1.25075 0.482256 2.04847 4.98979
0.78 0.340643 0.505516 -0.548727 0.622537 1.23616 0.498003 2.00534 4.69775
0.79 0.361603 0.511317 -0.457492 0.62876 1.22201 0.514158 1.96294 4,42593
tl pl vl pml vml vZ2 pm3 wvm3 v3

0.8 0.383362 0.517409 -0.368193 0.63521 1.20827 0.530736 1.92122 4.17246
0.801 0.385582 0.518036 -0.359369 0.635869 1.20692 0.532417 1.91709 4.14805
0.802 0.38781 0.518665 -0.350564 0.63653 1.20558 0.534103 1.91296 4.12382
0.803 0.390047 0.519298 -0.341778 0.637193 1.20423 0.535794 1.90883 4.09974
0.804 0.392291 0.519934 -0.333012 0.637859 1.20289 0.537489 1.90471 4.07583
0.805 0.394544 0.520573 -0.324265 0.638527 1.20156 0.539188 1.9006 4.05208
0.806 0.396805 0.52121¢ -0.315537 0.639198 1.20023 0.540892 1.8965 4.02849
0.807 0.3928074 0.521862 -0.306828 0.639872 1.1989 0.5426 1.8924 4.00505
0.808 0.401351 0.522511 -0.298138 0.640548 1.19758 0.544312 1.8883 3.98178
0.809 0.403637 0.523164 -0.289468 0.641227 1.19626 0.54603 1.88421 3.95865
tl pl vl pml vml v2 pm3 vm3 v3

0.81 0.40593 0.52382 -0.280816 0.641908 1.19494 0.547751 1.868013 3.93568
0.811 0.408232 0.52448 -0.272184 0.642593 1.19363 0.549478 1.87606 3.91286
0.812 0.410542 0.525143 -0.263571 0.64328 1.19232 0.551208 1.87199 3.8902
0.813 0.41286 0.52581 -0.254976 0.643969 1.19102 0.552944 1.86792 3.86768
0.814 0.415187 0.52648 -0.246401 0.644662 1.18972 0.554684 1.86386 3.84531
0.815 0.417521 0.527154 -0.237846 0.645357 1.18842 0.556429 1.85981 3.82308
0.816 0.419864 0.527832 -0.229309 0.646055 1.18713 0.558178 1.85576 3.801
0.817 0.422215 0.528514 -0.220791 0.646756 1.18584 0.559932 1.85171 3.77907
0.818 0.424575 0.529199 -0.212292 0.64746 1.168455 0.56169 1.84768 3.75727
0.819 0.426942 0.529888 -0.203813 0.648167 1.18327 0.563454 1.843864 3.73562
t1 pl vl pml wml v2 pm3 wm3 v3

0.82 0.429318 0.530581 -0.195352 0.648876 1.18199 0.565222 1.83962 3.7141
0.821 0.431703 0.531277 -0.186911 0.649589 1.18072 0.566994 1.83559 3.69273
0.822 0.434095 0.531978 -0.178488 0.650305 1.17945 0.568772 1.83158 3.67149
0.823 0.436496 0.532682 -0.170085 0.651023 1.17818 0.570554 1.82757 3.65039
0.824 0.438905 0.533391 -0.1617 0.651745 1.17692 0.572341 1.82356 3.62942
0.825 0.441323 0.534104 -0.153335 0.65247 1.17566 0.574133 1.81956 3.60859
0.826 0.443748 0.53482 -0.144989 0.653197 1.1744 0.57593 1.81556 3.58788
0.827 0.446183 0.535541 -0.136661 0.653928 1.17315 0.577731 1.81157 3.56731
0.828 0.448625 0.536266 -0.128353 0.654662 1.1719 0.579538 1.80758 3.54687
0.829 0.451076 0.536995 -0.120063 0.6554 1.17066 0.581349 1.8036 3.52656
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tl pl vl pml vml v2 pm3 vm3 v3

0.83 0.453535 0.537728 -0.111793 0.65614 1.16941 0.583165 1.79962 3.50637
0.831 0.456003 0.538466 -0.103542 0.656884 1.16818 0.584986 1.79564 3.48631
0.832 0.458479 0.539208 -0.0953093 0.657631 1.16694 0.586812 1.79168 3.46638
0.833 0.460963 0.539954 -0.0870959 0.658381 1.16571 0.588643 1.78771 3.4465¢
0.834 0.46345¢ 0.540705 -0.0789015 0.659135 1.16448 0.590479 1.78375 3.42687
0.835 0.465957 0.5414¢ -0.070726 0.659892 1.1632¢ 0.59232 1.77979 3.40731
0.836 0.468467 0.542219 -0.0625695 0.660653 1.16204 0.594166 1.77584 3.38786
0.837 0.470985 0.542984 -0.054432 0.661417 1.16082 0.596018 1.7719 3.36853
0.838 0.473512 0.543753 -0.0463135 0.662184 1.15961 0.597874 1.76795 3.34932
0.839 0.476047 0.544526 -0.0382139 0.662955 1.1584 0.599735 1.76401 3.33023
tl pl vl pml vml w2 pm3 vm3 v3

0.84 0.47859 0.545305 -0.0301333 0.66373 1.15719 0.601602 1.76008 3.31125
0.841 0.481142 0.546088 -0.0220717 0.664508 1.15599 0.603473 1.75615 3.29239
0.842 0.483702 0.54687¢ -0.014029 0.66529 1.15478 0.60535 1.75222 3.27365
0.843 0.486271 0.547669 -0.00600533 0.666075 1.15358 0.607232 1.7483 3.25501
0.844 0.488849 0.548466 0.00199941 0.666864 1.1524 0.609119 1.74438 3.23649
0.845 0.491434 0.5459269 0.00998519 0.667657 1.15121 0.611012 1.74046 3.21808
0.84¢ 0.494029 0.550077 0.017952 0.668454 1.15002 0.61291 1.73655 3.19977
0.847 0.496632 0.55089 0.0258999 0.669255 1.14884 0.614813 1.73264 3.18158
0.848 0.4959243 0.551708 0.0338287 0.670059 1.14766 0.616721 1.72873 3.16349
0.849 0.501863 0.552532 0.0417387 0.670867 1.14648 0.618635 1.72483 3.14551
tl pl vl pml vml v2 pm3 vm3 v3

0.85 0.504492 0.55336 0.0496296 0.67168 1.14531 0.620554 1.72093 3.12764
0.851 0.507129 0.554195 0.0575016 0.672496 1.14413 0.622478 1.71704 3.10987
0.852 0.509774 0.555034 0.0653546 0.673317 1.14297 0.624408 1.71315 3.09221
0.853 0.512429 0.555879 0.0731886 0.674141 1.1418 0.626344 1.70926 3.07464
0.854 0.515091 0.55673 0.0810037 0.67497 1.14064 0.628284 1.70537 3.05718
0.855 0.517763 0.557586 0.0887998 0.675803 1.13949 0.630231 1.70149 3.03982
0.856 0.520443 0.558448 0.0965769 0.67664 1.13833 0.632183 1.69761 3.02256
0.857 0.523131 0.559316 0.104335 0.677481 1.13718 0.63414 1.69373 3.0054
0.858 0.525829 0.56019 0.112074 0.678327 1.13603 0.636103 1.68986 2.98834
0.859 0.528534 0.561069 0.119794 0.679177 1.13489 0.638072 1.68599 2.97137
tl pl vl pml vml v2 pm3 vm3 v3

0.86 0.531249 0.561955 0.127495 0.680031 1.13375 0.640046 1.68212 2.9545
0.861 0.533972 0.562847 0.135177 0.68089 1.13261 0.642026 1.67825 2.93773
0.862 0.536704 0.563744 0.142841 0.681754 1.13147 0.644012 1.67439 2.92105
0.863 0.539444 0.564648 0.150485 0.682622 1.13034 0.646003 1.67053 2.90446
0.864 0.542193 0.565559 0.15811 0.683495 1.12921 0.648 1.66667 2.88797
0.865 0.544951 0.566476 0.165716 0.684373 1.12809 0.650003 1.66281 2.87157
0.866 0.547717 0.567399 0.173303 0.685255 1.12696 0.652012 1.65895 2.85526
0.867 0.550493 0.568329 0.180871 0.686142 1.12584 0.654026 1.6551 2.83904
0.868 0.553276 0.569265 0.188419 0.687034 1.12473 0.656047 1.65125 2.82291
0.869 0.556069 0.570209 0.195949 0.687931 1.12361 0.658073 1.6474 2.80686
tl pl vl pml vml v2 pm3 vm3 v3

0.87 0.55887 0.571159 0.20346 0.688833 1.1225 0.660105 1.64356 2.79091
0.871 0.56168 0.572116 0.210952 0.68974 1.12139 0.662144 1.63971 2.77504
0.872 0.564499 0.57308 0.218424 0.690653 1.12029 0.664188 1.63587 2.75925
0.873 0.567326 0.574052 0.225877 0.69157 1.11919 0.666238 1.63202 2.74355
0.874 0.570162 0.57503 0.233312 0.692493 1.11809 0.668295 1.62818 2.72794
0.875 0.573007 0.576016 0.240727 0.693421 1.11699 0.670357 1.62434 2.71241
0.876 0.575861 0.577009 0.248123 0.694355 1.1159 0.672426 1.62051 2.69696
0.877 0.578723 0.57801 0.2555 0.695294 1.11481 0.6745 1.61667 2.68159
0.878 0.581595 0.579019 0.262858 0.696238 1.11372 0.676582 1.61283 2.66631
0.879 0.584475 0.580035 0.270196 0.697188 1.11264 0.678669 1.609 2.6511

97



98

tl pl vl pml vml v2 pm3 vm3 v3

0.88 0.587363 0.581059 0.277515 0.698144 1.11156 0.680762 1.60517 2.63597
0.881 0.590261 0.582092 0.284816 0.699106 1.11048 0.682862 1.60133 2.62092
0.882 0.593168 0.583132 0.292096 0.700074 1.1094 0.684968 1.5975 2.60595
0.883 0.596083 0.584181 0.299358 0.701047 1.10833 0.687081 1.59367 2.59106
0.884 0.599007 0.585238 0.3066 0.702027 1.10726 0.6892 1.58984 2.57624
0.885 0.60194 0.586303 0.313824 0.703012 1.10619 0.691326 1.58601 2.56149
0.886 0.604881 0.587377 0.321027 0.704004 1.10513 0.693458 1.58218 2.54683
0.887 0.607832 0.58846 0.328212 0.705003 1.10407 0.695596 1.57834 2.53223
0.888 0.610791 0.589552 0.335377 0.706007 1.10301 0.697742 1.57451 2.51771
0.889 0.61376 0.590653 0.342523 0.707018 1.10196 0.699893 1.57068 2.50326
tl pl vl pml vml v2 pm3 vm3 v3

0.89 0.616737 0.591763 0.349649 0.708036 1.1009 0.702052 1.56685 2.48888
0.891 0.619723 0.592882 0.356756 0.70906 1.09985 0.704217 1.56302 2.47457
0.892 0.622718 0.594011 0.363844 0.710091 1.09881 0.706389 1.55919 2.46033
0.893 0.625722 0.595149 0.370912 0.711129 1.09776 0.708568 1.55536 2.44016
0.894 0.628735 0.596297 0.377961 0.712174 1.09672 0.710753 1.55152 2.43206
0.895 0.631756 0.597456 0.38499 0.713226 1.09568 0.712946 1.54769 2.41803
0.896 0.634787 0.598624 0.392 0.714286 1.09464 0.715145 1.54386 2.40406
0.897 0.637826 0.599802 0.39899 0.715352 1.09361 0.717352 1.54002 2.39016
0.898 0.640875 0.600992 0.405961 0.716426 1.09258 0.719565 1.53618 2.37632
0.899 0.643932 0.602191 0.412912 0.717508 1.09155 0.721786 1.53234 2.36255
tl pl vl pml vml v2 pm3 vm3 v3

0.9 0.646998 0.603402 0.419843 0.718597 1.09053 0.724013 1.5285 2.34884
0.901 0.650074 0.604624 0.426755 0.71969%4 1.0895 0.726248 1.52466 2.3352
0.902 0.653158 0.605856 0.433647 0.720799 1.08848 0.72849 1.52082 2.32161
0.903 0.656251 0.607101 0.44052 0.721912 1.08747 0.730739 1.51697 2.30809
0.904 0.659353 0.608356 0.447373 0.723033 1.08645 0.732996 1.51313 2.29463
0.905 0.662464 0.609624 0.454206 0.724163 1.08544 0.73526 1.50928 2.28123
0.906 0.665584 0.610904 0.461019 0.725301 1.08443 0.737531 1.50543 2.26789
0.907 0.668714 0.612196 0.467812 0.726448 1.08342 0.73981 1.50157 2.25461
0.908 0.671852 0.613501 0.474586 0.727603 1.08242 0.742097 1.49771 2.24138
0.909 0.674999 0.614818 0.481339 0.728767 1.08142 0.744391 1.49385 2.22821
tl pl vl pml vml v2 pm3 vm3 v3

0.91 0.678155 0.616148 0.488073 0.729941 1.08042 0.746692 1.48999 2.2151
0.911 0.68132 0.617492 0.494787 0.731124 1.07942 0.749002 1.48612 2.20205
0.912 0.684495 0.618849 0.50148 0.732316 1.07843 0.751319 1.48225 2.18904
0.913 0.687678 0.620219 0.508154 0.733517 1.07744 0.753644 1.47838 2.17609
0.914 0.69087 0.621604 0.514808 0.734729 1.07645 0.755976 1.4745 2.1632
0.915 0.694072 0.623003 0.521441 0.73595 1.07546 0.758317 1.47062 2.15036
0.916 0.697282 0.624417 0.528054 0.737182 1.07448 0.760666 1.46673 2.13756
0.917 0.700502 0.625846 0.534647 0.738423 1.0735 0.763023 1.46284 2.12482
0.918 0.70373 0.62729 0.54122 0.739676 1.07252 0.765388 1.45895 2.11213
0.919 0.706968 0.628749 0.547772 0.740939 1.07154 0.767761 1.45505 2.09949
tl pl vl pml vml v2 pm3 vm3 v3

0.92 0.710215 0.630225 0.554305 0.742213 1.07057 0.770143 1.45114 2.0869
0.921 0.71347 0.631716 0.560816 0.743498 1.0696 0.772532 1.44723 2.07435
0.922 0.716735 0.633224 0.567307 0.744795 1.06863 0.774931 1.44331 2.06185
0.923 0.72001 0.634749 0.573778 0.746103 1.06766 0.777337 1.43939 2.0494
0.924 0.723293 0.636292 0.580228 0.747423 1.0667 0.779752 1.43546 2.03699
0.925 0.726585 0.637852 0.586658 0.748755 1.06574 0.782176 1.43153 2.02462
0.926 0.729887 0.63943 0.593067 0.7501 1.06478 0.784609 1.42759 2.0123
0.927 0.733197 0.641027 0.599455 0.751457 1.06382 0.78705 1.42364 2.00002
0.928 0.736517 0.642642 0.605822 0.752828 1.06287 0.789501 1.41968 1.98778
0.929 0.739846 0.644277 0.612168 0.754211 1.06192 0.79196 1.41572 1.97559
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tl pl vl pml vml v2 pm3 vm3 v3

0.93 0.743184 0.645932 0.618494 0.755608 1.06097 0.794428 1.41174 1.96343
0.931 0.746531 0.647608 0.624798 0.757019 1.06002 0.796905 1.40776 1.95131
0.932 0.749887 0.649304 0.631082 0.758444 1.05908 0.799392 1.40378 1.93923
0.933 0.753253 0.651021 0.637344 0.759883 1.05813 0.801888 1.39978 1.92719
0.934 0.756628 0.652761 0.643585 0.761338 1.05719 0.804393 1.39577 1.91518
0.935 0.760012 0.654523 0.649805 0.762807 1.05626 0.806908 1.39175 1.90321
0.936 0.763405 0.656308 0.656003 0.764292 1.05532 0.809432 1.38773 1.89127
0.937 0.766807 0.658117 0.662181 0.765793 1.05439 0.811966 1.38369 1.87936
0.938 0.770219 0.65995 0.668336 0.76731 1.05346 0.81451 1.37964 1.86749
0.939 0.77364 0.661808 0.67447 0.768845 1.05253 0.817063 1.37558 1.85564
tl pl vl pml vml v2 pm3 vm3 v3

0.94 0.77707 0.663692 0.680582 0.770396 1.0516 0.819627 1.37151 1.84383
0.941 0.780509 0.665602 0.686673 0.771965 1.05068 0.8222 1.36743 1.83205
0.942 0.783958 0.66754 0.692741 0.773552 1.04976 0.824784 1.36333 1.82029
0.943 0.787415 0.669505 0.698788 0.775158 1.04884 0.827379 1.35922 1.80856
0.944 0.790882 0.6715 0.704812 0.776783 1.04792 0.829983 1.3551 1.79685
0.945 0.794359 0.673524 0.710815 0.778427 1.04701 0.832598 1.35096 1.78517
0.946 0.797844 0.675578 0.716795 0.780092 1.0461 0.835224 1.34681 1.77351
0.947 0.801339 0.677664 0.722752 0.781778 1.04519 0.837861 1.34264 1.76187
0.948 0.804843 0.679783 0.728688 0.783486 1.04428 0.840508 1.33846 1.75025
0.949 0.808357 0.681935 0.7346 0.785215 1.04338 0.843167 1.33425 1.73865
tl pl vl pml vml v2 pm3 vm3 v3

0.95 0.811879 0.684122 0.74049 0.786967 1.04247 0.845837 1.33004 1.72707
0.951 0.815411 0.686345 0.746357 0.788743 1.04157 0.848518 1.3258 1.7155
0.952 0.818953 0.688605 0.752201 0.790543 1.04067 0.851211 1.32154 1.70395
0.953 0.822503 0.690903 0.758022 0.792369 1.03978 0.853915 1.31727 1.69241
0.954 0.826063 0.693241 0.76382 0.79422 1.03888 0.856631 1.31297 1.68088
0.955 0.829632 0.69562 0.7695%94 0.796098 1.03799 0.859359 1.30865 1.66936
0.956 0.833211 0.698042 0.775344 0.798004 1.0371 0.8621 1.30431 1.65784
0.957 0.836799 0.700508 0.781071 0.799939 1.03621 0.864852 1.29994 1.64633
0.958 0.840396 0.70302 0.786774 0.801904 1.03533 0.867617 1.29555 1.63482
0.959 0.844003 0.70558 0.792453 0.803899 1.03444 0.870395 1.29114 1.62332
tl pl vl pml vml v2 pm3 vm3 v3

0.96 0.847619 0.708189 0.798108 0.805927 1.03356 0.873186 1.28669 1.61181
0.961 0.851244 0.710851 0.803739 0.807988 1.03268 0.875989 1.28222 1.60029
0.962 0.854879 0.713566 0.809344 0.810084 1.03181 0.878806 1.27772 1.58878
0.963 0.858523 0.716338 0.814925 0.812217 1.03093 0.881637 1.27319 1.57725
0.964 0.862176 0.719169 0.820481 0.814387 1.03006 0.884481 1.26862 1.56571
0.965 0.865839 0.722061 0.826012 0.816596 1.02919 0.887339 1.26402 1.55415
0.966 0.869511 0.725018 0.831517 0.818847 1.02832 0.890211 1.25939 1.54258
0.967 0.873193 0.728042 0.836997 0.821141 1.02746 0.893098 1.25471 1.53098
0.968 0.876884 0.731138 0.842451 0.823479 1.02659 0.896 1.25 1.51936
0.969 0.880584 0.734308 0.847878 0.825866 1.02573 0.898917 1.24524 1.50771
tl pl vl pml vml v2 pm3 vm3 v3

0.97 0.884294 0.737556 0.853279 0.828302 1.02487 0.901849 1.24044 1.49603
0.971 0.888014 0.740887 0.858653 0.83079 1.02401 0.904796 1.23559 1.48431
0.972 0.891742 0.744306 0.864 0.833333 1.02316 0.90776 1.23069 1.47254
0.973 0.89548 0.747817 0.86932 0.835935 1.0223 0.91074 1.22574 1.46073
0.974 0.899228 0.751427 0.874611 0.838598 1.02145 0.913736 1.22073 1.44886
0.975 0.902985 0.755141 0.879875 0.841327 1.0206 0.91675 1.21566 1.43693
0.976 0.906752 0.758965 0.88511 0.844125 1.01975 0.919781 1.21053 1.42493
0.977 0.910528 0.762909 0.890316 0.846997 1.01891 0.92283 1.20533 1.41286
0.978 0.914313 0.766979 0.895493 0.849948 1.01806 0.925897 1.20005 1.40071
0.979 0.918108 0.771185 0.90064 0.852983 1.01722 0.928984 1.19469 1.38846



tl pl vl pml vml v2 pm3 vm3 v3

0.98 0.921912 0.775539 0.905756 0.856109 1.01638 0.932089 1.18925 1.3761
0.981 0.925726 0.78005 0.910841 0.859333 1.01554 0.935215 1.18371 1.36363
0.982 0.92955 0.784734 0.915895 0.862663 1.01471 0.938361 1.17808 1.35103
0.983 0.933383 0.789606 0.920917 0.866108 1.01387 0.941529 1.17233 1.33828
0.984 0.937225 0.794682 0.925905 0.869679 1.01304 0.944718 1.16646 1.32536
0.985 0.941077 0.799984 0.93086 0.873387 1.01221 0.947931 1.16046 1.31226
0.986 0.944938 0.805536 0.935781 0.877248 1.01139 0.951167 1.15431 1.29896
0.987 0.948809 0.811367 0.940665 0.881278 1.01056 0.954427 1.14799 1.28541
0.988 0.95269 0.817511 0.945514 0.885498 1.00974 0.957714 1.1415 1.27159
0.989 0.95658 0.824009 0.950324 0.889931 1.00891 0.961027 1.13479 1.25746
tl pl vl pml vml v2 pm3 vm3 v3

0.99 0.960479 0.830914 0.955095 0.894609 1.00809 0.964369 1.12784 1.24295
0.991 0.964388 0.83829 0.959826 0.899571 1.00728 0.967741 1.12061 1.22802
0.992 0.968307 0.846223 0.964513 0.904864 1.00646 0.971144 1.11306 1.21257
0.993 0.972235 0.854822 0.969156 0.910555 1.00565 0.974581 1.10511 1.19649
0.994 0.976173 0.864242 0.973752 0.916735 1.00483 0.978055 1.09668 1.17962
0.995 0.98012 0.874706 0.978297 0.923531 1.00402 0.981569 1.08764 1.16176
0.996 0.984077 0.886555 0.982787 0.931145 1.00321 0.985128 1.07778 1.14254
0.997 0.988043 0.900365 0.987216 0.939911 1.00241 0.988736 1.06678 1.1214
0.998 0.992019 0.917266 0.991576 0.950485 1.0016 0.992403 1.05397 1.09721
0.999 0.996005 0.940177 0.995851 0.964562 1.0008 0.996143 1.03766 1.06704
tl pl vl pml vml v2 pm3 vm3 v3
0.999 0.996005 0.940177 0.995851 0.964562 1.0008 0.996143 1.03766 1.06704
0.9991 0.996404 0.943088 0.996273 0.966329 1.00072 0.996523 1.03567 1.06341
0.9992 0.996803 0.946184 0.996694 0.968204 1.00064 0.996903 1.03358 1.05959
0.9993 0.997202 0.9495 0.997113 0.970207 1.00056 0.997284 1.03135 1.05555
0.9994 0.997602 0.953087 0.997531 0.972366 1.00048 0.997667 1.02897 1.05124
0.9995 0.998001 0.957015 0.997948 0.974723 1.0004 0.998051 1.02639 1.04659
0.9996 0.998401 0.961394 0.998363 0.977342 1.00032 0.998437 1.02355 1.04149
0.9997 0.9988 0.966409 0.998776 0.980328 1.00024 0.998824 1.02034 1.03575
0.9998 0.9992 0.972419 0.999187 0.983889 1.00016 0.999213 1.01656 1.02902
0.9999 0.9996 0.980354 0.999595 0.988563 1.00008 0.999605 1.01166 1.02037
tl pl vl pml vml v2 pm3 vm3 v3
0.9999 0.9996 0.980354 0.999595 0.988563 1.00008 0.999605 1.01166 1.02037
0.99991 0.99964 0.981345 0.999636 0.989145 1.00007 0.999644 1.01106 1.0193
0.99992 0.99968 0.982395 0.999677 0.98976 1.00006 0.999683 1.01042 1.01818
0.99993 0.99972 0.983515 0.999717 0.990416 1.00006 0.999723 1.00974 1.01699
0.99994 0.99976 0.984721 0.999758 0.991122 1.00005 0.999762 1.00901 1.01571
0.99995 0.9998 0.986036 0.999798 0.99189 1.00004 0.999802 1.00822 1.01432
0.99996 0.99984 0.987493 0.999839 0.992741 1.00003 0.999841 1.00735 1.01279
0.99997 0.99988 0.989153 0.999879 0.993709 1.00002 0.999881 1.00636 1.01106
0.99998 0.99992 0.991127 0.99992 0.994858 1.00002 0.99992 1.00519 1.00902
0.99999 0.99996 0.993711 0.99996 0.99636 1.00001 0.99996 1.00366 1.00636
tl pl vl pml vml v2 pm3 vm3 v3

0.99999 0.9999%6 0.993711 0.9999%6 0.99636 1.00001 0.9999%6 1.00366 1.00636
0.999991 0.999964 0.994032 0.999964 0.996546 1.00001 0.999964 1.00347 1.00603
0.999992 0.999968 0.994372 0.999968 0.996743 1.00001 0.999968 1.00327 1.00569
0.999993 0.999972 0.994734 0.999972 0.996953 1.00001 0.999972 1.00306 1.00532
0.999994 0.999976 0.995123 0.999976 0.997178 1. 0.999976 1.00284 1.00492
0.999995 0.99998 0.995546 0.99998 0.997424 1. 0.99998 1.00259 1.00449
0.999996 0.999984 0.996014 0.999984 0.997695 1. 0.999984 1.00231 1.00401
0.999997 0.999988 0.996547 0.999988 0.998003 1. 0.999988 1.002 1.00347
0.999998 0.999992 0.997179 0.999992 0.998369 1. 0.999992 1.00164 1.00284
0.999999 0.999996 0.998004 0.999996 0.998846 1. 0.999996 1.00116 1.002
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