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_________________________________________________________________________ 

Johannes Diderik van der Waals (November 23, 1837 – March 8, 1923) was a Dutch theoretical 

physicist and thermodynamicist famous for his work on an equation of state for gases and liquids. His 

name is primarily associated with the van der Waals equation of state that describes the behavior of gases 

and their condensation to the liquid phase. His name is also associated with van der Waals forces (forces 

between stable molecules), with van der Waals molecules (small molecular clusters bound by van der 

Waals forces), and with van der Waals radii (sizes of molecules). He became the first physics professor 

of the University of Amsterdam when it opened in 1877 and won the 1910 Nobel Prize in physics. 

 

 
http://en.wikipedia.org/wiki/Johannes_Diderik_van_der_Waals 

_________________________________________________________________________ 

Thomas Andrews (9 December 1813 – 26 November 1885) was a chemist and physicist who did 

important work on phase transitions between gases and liquids. He was a longtime professor of chemistry 

at Queen's University of Belfast. 

https://en.wikipedia.org/wiki/Thomas_Andrews_%28scientist%29 
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https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Andrews_Thomas.jpg/225px-

Andrews_Thomas.jpg 
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Fig.1 Maxwell construction for a van der Waals system with the law of the corresponding states 

(we use the Mathematica for this). The critical point is at K. Phase coexistence occurs along 

the path a-c-e, when the shaded areas are equal. The line AK and AB are the spinodal lines. 

This figure is obtained by using the Mathematica. The van der Waals isotherms. For tr<1, 

there is a region a-b-c-d-e in which, for a given values of reduced pressure pr and the 

reduced volume vr is not uniquely specified by the van der Waals equation. In this region 

the gas transforms to liquid. The states on the path b-d are unstable. The observed state 

follows the path ace.  
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Fig.2 ParametricPlot3D of {vr, 10(1-tr), pr} for the van der Waals system, by using the 

Mathematica. The co-existence boundary is shown by the blue circles. For the sake of 

clarity, we use 10(1-tr) instead of (1 - tr). The values of vr and pr for each reduced 

temperature are listed in the APPENDIX. 
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The van der Waals equation is a thermodynamic equation describing gases and liquids under a given 

set of pressure (P), volume (V), and temperature (T) conditions (i.e., it is a thermodynamic equation of 

state). It was derived in 1873 by Johannes Diderik van der Waals, who received the Nobel Prize in 1910 

for "his work on the equation of state for gases and liquids. The equation is a modification to and 

improvement of the ideal gas law, taking into account the nonzero size of atoms and molecules and the 

attraction between them. van der Waals equation of state, when supplemented by the Maxwell construction 

(equal-area rule), provides in principle a complete description of the gas and its transition to the liquid, 

including the shape of the coexistence boundary curve. 

Here we discuss the physics of the van der Waals equation of state from numerical calculations. We 

use the Mathematica to determine the detail of the flat portion (the coexistence line of liquid phase and 

gas phase). We also discuss the critical behavior near the critical point. To this end, it is significant for us 

to get the appropriate Mathematica program to determine the nature of the flat portion (the coexistence of 

liquid and gas phase). Before we started to make our own Mathematica program for the van der Waals 

equation of state, we found three resources for the programs related to this equation (as far as we know). 

The Maxwell construction was briefly discussed using the Mathematica by Kinzel and Reents (1998). 

Second is form the book of Nino Boccara, Essentials of Mathematica (Springer, 2007). The third is from 

Paul Abbott, The Mathematica Journal vol.8 Issue 1 (2001, Trick of the Trade, Maxwell Construction). 

Here we use the method with FindRoot, which is used by Abbott for the evaluation of Maxwell’s 

construction. There is no simple analytical solution to equation for the Maxwell construction. Fairly 

accurate initial guesses are required. These can be obtained from the plots of the unphysical van der Waals 

equation. Here we show our Mathematica program to discuss the van der Waals equation of state.  

Here we use the Mathematica (ContourPlot, ParametricPlot, Plot3D, ParametricPlot3D, and so on) for 

the calculations. Because of the nature of the nonlinearity in the van der Waals equation of state, the use 

of the Mathematica is essential to our understanding on the critical behavior of liquid-gas system around 

the critical point.  

Although we spent many years in understanding the nature of the van der Waals equation of state. 

unfortunately our understanding was not sufficient. Thanks to the Mathematica, finally we really 

understand how to calculate the exact values of thermodynamic parameters at fixed temperatures such as 

p1, v1, v2, v3, vm1, pm1, vm3, pm3 (see the definitions in the text) using the Mathematica. Using these 

parameters we will discuss various thermodynamic properties of the van der Waals equation of state. 

There have been so many books and papers since the appearance of the van der Waals equation. Almost 

all the universal properties of van der Waals equation have been discussed thoroughly. Although there is 

nothing new in this article, we present our results of calculations using Mathematica. 

 

2. Historical Background 

The proper elucidation of the nature of gas-liquid equilibrium and the so-called critical point was 

gained by a series of experiments carried out by Thomas Andrews at Queen’s College, Belfast, between 

1861 and 1869. He chose carbon dioxide (CO2) for his work. It is gaseous at normal temperatures and the 

pressure required for studying the whole range where gas and liquid are in equilibrium are relatively low. 

He determined, at different temperatures, the change in the volume of a given quantity of the substance 
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when the pressure varied. The resultant curves are called isotherms because they each refer to one and the 

same temperature.  

The flat part of the isotherm reveals an important fact. Since the pressure remains constant, while more 

and more of the gas condenses into liquid, the pressure of the gas in contact with the liquid must be always 

the same, quite independent of whether a small or a large fraction if the volume is occupied by liquid. It 

also is apparent from Andrew’s diagram that this equilibrium pressure rises as we go to higher isotherms, 

i.e., as the temperature is increased. Moreover, we also notice that the flat part becomes shorter until a 

singularly important isotherm is reached which has no true flat portion at all but just one point (the so-

called the critical point Tc) at which the direction of the curve changes its sign. The higher isotherms are 

now all ascending smoothly over the whole range of pressure and volume, and if one goes to still higher 

temperatures, the isotherms attain more and more the shape of true rectangular hyperbola. This is then the 

region in which Boyle’s law is valid. 
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Fig.3 Isotherms of a real gas (CO2) as measured by Andrews. They approximate Boyle’s law 

only at high temperatures. At low temperatures they are more complicated and below the 

critical point there is a region of liquefaction. The critical temperature of CO2 is 31 °C.  
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Fig.4 Isotherms of a real gas (H2CO3) as measured by Andrews. 

 

Andrew’s result not only yielded a wealth of new facts but they also presented a beautifully complete 

and satisfying picture of the relation between the gaseous and liquid states of aggregation. Andrew’s 

careful measurements opened the way to an understanding of the strong forces of cohesion which are 

vested in each atom but never reach the dimension of ordinary macroscopic observation. It should also be 

noted that, while Andrew’s observations were confined to carbon dioxide, the pattern is quite generally 

valid.  

We have used Andrew’s diagram not only for its historical interest but also because it illustrates in a 

clear and convincing manner the significance and the boundaries of the liquid state. Van der Waals used 

Andrews’s terminology, and even adopted the title of Andrews’s Bakerian lecture, without reference, 

almost verbatim as the title of his doctoral thesis of Van der Waals developed his equation of state 

independently, but he did compare it with Andrews’s results. 

Only four years elapsed before van der Waals used newly developing ideas on the kinetic theory of 

gases to give a plausible theoretical explanation of Andrew’s experimental data. van der Waals assume 

that gas is made up of molecules with a hard core and a long-range mutual attraction. The range of the 

attractive forces was assumed to be long compared with the mean free path, and they give rise to a negative 

internal pressure.  

 

2int
v

a
P ernal  , 

 

where NVv /  is the volume per molecule. For the hard core he made the simplest assumption that the 

available volume is reduced from v to v-b. Hence the equation he put forward was 
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The new equation, which instead of the old TPV / constant now has, when plotted, a peculiar wiggly 

shape. In this wiggly region van der Waal’s equation has for any given pressure three solutions for the 

volume. A straight line, joining any of these three solutions will then result in a curve which very closely 

resembles the flat portion of the Andrew’s isotherms. It is no doubt that in its broad concepts the van der 

Waals’ approach was correct. The importance of this equation was quickly recognized by Maxwell who 

reviewed the thesis in Nature in 1874, and in a lecture to Chemical Society in 1875. It was in this lecture 

that Maxwell put forward his famous “equal-area construction, which completes the van der Waals 

treatment of liquid-gas equilibrium. The equal-area rule (Maxwell construction) can be expressed as 

 


G

V

V

V

lgV PdVVVP )( , 

 

where PV is the vapor pressure (flat portion of the curve), Vl is the volume of the pure liquid phase on the 

diagram, and Vg is the volume of the pure gas phase. The sum of these two volumes will equal the total 

volume V. 

Thanks to such pioneering works, we now understand the essential nature of liquid phase and gas 

phase. A flat portion for the low temperature phase, corresponds to the region where the liquid condenses 

from the gas. Following any of these isotherms from large to small volume, i.e., starting on the right-hand 

side, we encounter the rise and then a kink where the level portion starts. Here the very first droplets of 

liquid appear. When now the volume is further decreased, more and more of the gas turns into liquid until, 

at the end of the level stretch, there is no gas left at all. From now on any further increase in pressure 

hardly changes the volume at all, showing that the liquid phase is highly incompressible. 

Much more detail of the historical background on the van der Waals equation of state can be learned 

from the following books. 

 

J.C. Maxwell, The Scientific Papers of James Clerk Maxwell vol.II, van der Waals on the Continuity of 

the Gaseous and Liquid States (Dover Edition). ). p.424 - 426. 

J.S. Rowlinson and F.L. Swinton, Liquids and Liquid Mixtures, 3rd edition (Butterworth Scientific, 1982). 

C. Domb, The Critical Point: A historical introduction to the modern theory of critical phenomena (Taylor 

& Francis, 1996). p.39 - 74. 

J.L. Sengers, How fluids in mix Discoveries by the School of Van der Waals and Kamerlingh Onnes (Royal 

Netherlands Academy of Arts and Sciences, 2002). 

R. Flood, M. McCartney and A. Whitaker, James Clerk Maxwell: Perspectives on his Life and Work 

(Oxford, 2014). Chapter 8, J.S. Rowlinson, Maxwell and the theory of Liquids. 

 

3. Origin for the van der Waals equation of state 
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van der Waals realized that two main factors were to be added to the ideal gas equation: the effect of 

molecular attraction and the effect of molecular size. The intermolecular forces would add a correction to 

the ideal gas pressure, whereas the molecular size would decrease the effective volume. In the case of the 

ideal gas there is no intermolecular attraction. The intermolecular attraction decreases the pressure from 

its ideal value. If realP  is the pressure of a real gas and idealP  is the corresponding pressure of the ideal gas, 

i.e. the pressure in the absence of intermolecular forces, then  

 

pPP realideal  , 

 

where p  is the correction. Since the pressure is proportional to the number density ( )/VN  (as can be 

seen from the ideal gas equation), p  should be proportional to ( )/VN ). In addition, the total force on 

each molecule close to the wall of the container is also proportional to the number density ( )/VN ); hence 

p  should be proportional to two factors of ( )/VN ) so that one may write: 

 

2)(
V

N
ap  . 

 

The correction to the volume due to the molecular size, i.e., the" excluded volume," is simply 
proportional to the number of molecules. Hence 

 

NbVVideal  , 

 

in which b is the correction for one mole. Substituting these values in the ideal gas equation 
 

TNkVP Bidealideal  . 

 
we obtain the van der Waals equation 

 

TNkNbV
V

aN
P B ))((

2

2

. 
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Fig.5 van der Waals considered molecular interaction and molecular size to improve the ideal 

gas equation. (a) The pressure of a real gas is less than the ideal gas pressure because 

intermolecular attraction decreases the speed of the molecules approaching the wall. 

Therefore pPP idealreal  . (b) The volume available to molecules is less than the volume 

of the container due to the finite size of the molecules. This "excluded" volume depends 

on the total number of molecules. Therefore NbVVideal  . [D. Kondepudi and I. 

Prigogine, Modern Thermodynamics, p.18 Figure 1.4]. 

 

4. Derivation of van der Waals equation: Helmholtz free energy 

For ideal gas, the partition function is given by 

 

VnZ Q1 . 

 

so the free energy F is calculated as 
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where 
V

N
n  , and Qn  is the quantum concentration; 
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where m is a mass of atom. 
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with the constant  

 

3

2/3
)2(

h
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In summary the Helmholtz free energy is obtained as 

 

]1lnln
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The pressure P is obtained as 
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or more simply, 
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((van der Waals equation)) 

or 
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Since 
N

V
v  , the above van der Waals equation can be rewritten as 

 

TNkbNV
V

aN
P B ))((

2

2

. 

 

5. Law of the corresponding state 
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From Eqs.(1) - (3), we have 
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Note that 
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Here we define the dimensionless variables by  
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and the dimensionless form of the van der Waals equation, 
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   Law of corresponding state.

 

 

((Universality)) Law of corresponding state 

This equation is universal since it contains no parameters characteristic of an individual substance, 

and so it is equally valid for all. The variables of pr, vr, and tr is called the reduced variables. The 

thermodynamic properties of substances are the same in corresponding states, that is, states with a pair of 

equal reduced variables from the complete triplet of variables. In fact, the existence of such an equation 

implies that if two reduced variables are the same for a set of the systems, then the third reduced variable 

is also the same throughout the set. 
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((Visualization of the phase transition of van der Waals system by Mathematica)) 

The phase diagrams of pr vs vr and vr vs pr are shown below. It can be obtained by using the Maxwell 

construction for the van der Waals system (we use the Mathematica to get this. The method will be 

discussed later).  

 

 
 

Fig.6 The phase diagrams of pr vs vr fot rt =0.80 – 1.20. The horizontal straight line for tr<1 is 

the coexistence line between the liquid phase and the gas phase. 
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Fig.7 The vr vs pr phase diagram at fixed reduced temperatures (tr = 0.80 -1.20 with tr = 0.02). 

The vertical straight line for tr<1 is the coexistence line between the liquid phase and gas 

phase. 
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Fig.8 rr vp  / vs rv  phase diagram at fixed reduced temperatures (tr = 0.80 -1.20 with tr = 0.02). 

0/  rr vp  for 31 vvv   ( 1rt ). 

 

 
 

 

 

Fig.9 Typical examples for the Maxwell construction. The phase diagrams of pr vs vr fot tr = 0.99 

and 0.98. The area of closed path a-c-b-a is equal to that of the closed c-d-e-c. The path a-

c-e is the coexistence line.  

 

6 Compressibility factor Z 

The compressibility factor Z is defined by 
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Z should be equal to 3/8 at the critical point (pr = 1, vr = 1, tr = 1) for the van der Waals systems. We make 

a plot of Z as a function of pr by using the ParametricPlot of Mathematica, where tr is changed as a 

parameter (tr = 0.7 – 2). When tr is much larger than 1, Z tends to 1 (it is independent of vr), as is expected 

from the Boyle’s law for the ideal gas (in the non-interacting limit). The deviation from the ideal gas 

behavior (the Boyl’s law) is clearly indicated from the compressibility factor Z as a function of vr. Note that 

there is a discontinuity in Z at the reduced pressure corresponding to the coexistence line. It is a useful 

thermodynamic property for modifying the ideal gas law (Boyle’s law) to account for the real gas behavior. 

 

 

 
 

Fig.10 Compressibility factor Z as a function of pr for the van der Waals gas. tr = 0.70 – 2.0. Z = 

1 for the ideal gas obeying the Boyle’s law.  
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((Mathematica)) 
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We make a ParametricPlot of the co-ordinate ),( Zpr , where tr is fixed as a parameter and vr is changed 

over the whole range of vr.  

 

 
 

Fig.11 Compressibility factor Z as a function of reduced pressure pr, where tr is changed as a 

parameter. The fact that the data for a wide variety of fluids fall on identical curves supports 

the law of corresponding states. [H.E. Stanley, Introductiom to Phase Transitions and 

Critical Phenomena, p.73] 
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((Mathematica)) 

 
 

Clear "Global` " ; p0 t , v :
3

v2

8

3
t

v
1

3

;

Z t , v :
3

8

p0 t, v v

t
;

f1 ParametricPlot

Evaluate Table p0 t, v , Z t, v ,

t, 1, 2, 0.1 , v, 0.34, 15 ,

PlotRange 0, 8 , 0.2, 1.5 ,

PlotStyle Table Hue 0.1 i , Thick , i, 0, 10 ,

AspectRatio 1 ;

f2

Graphics

Text Style "pr", Black, 12, Italic , 6, 0.25 ,

Text Style "Z", Black, 12, Italic ,

0.32, 1.4 ,

Text Style "tr 1", Black, 12, Italic ,

1.0, 0.3 ,

Text Style "1.2", Black, 12, Italic ,

2, 0.55 ,

Text Style "1.4", Black, 12, Italic ,

2.7, 0.7 ,

Text Style "1.6", Black, 12, Italic , 3.3, 0.79

, Text Style "1.8", Black, 12, Italic ,

4, 0.865 ,

Text Style "2.0", Black, 12, Italic ,

4.5, 0.925 ;

Show f1, f2



23 

 

7. Critical points and critical exponents 

To examine the critical behavior, we write 
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where , , and can be regarded as small. We obtain the universal equation 
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The term omitted from this expression are justified post hoc in fact, we can see that   , so Eq.(1) is 

indeed the lowest non-trivial order approximation to the equation of state near the critical point. 

 

((Mathematica)) 
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(a) Critical exponent  

We start with 
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When 0 ,  

 

41rp  with 0 .  

 

which is nearly equal to the reduced pressure p1 for the coexistence line (the path a-c-e). Then we have 

 

0
2

3
6 3   , 

 

or 

0 ,    2 . 

 

where 0 . Then we have 

 

  23 ,    21 . 

 

The reduced pressures v1 (= vl) at the point a and v3 (= vg) at the point e, are obtained as 

 

  211 11v , 

 

 413 lg vvvv , 

 

lg vv   depends on (-). It reduces to zero when  0 . The critical exponent  is equal to 1/2. 

 

2

1
   (mean-field exponent).  
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Fig.13 The points a; ),( 11 pv , c; , ),( 12 pv , and e; ),( 13 pv , in the pr-vr plane. 411 p . 

  211 11v .   211 33v .  is negative.    is very small. 

 

(b) Critical exponent  and ’ 
The isothermal compressibility is defined by 
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For <0,  42  , 
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The isothermal compressibility T  diverges as 01rt  with a critical exponent 

 

1'  .  (mean-field exponent). 

 

In summary, we have 
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(c) Critical exponent for specific heat at constant volume 

The specific heat predicted by the van der Waals theory is 
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where 2/3 BV kc   is the non-interacting (high-temperature) limit or ideal gas. Thus we have the critical 

exponent, 

 

0 . 

 

Note that the slope of Vc  vs tr is finite as 1rt  from below, so that we have 0' . 

((Note)) This discussion is repeated later for the critical behavior of the specific heat. 

 

(d) Critical exponent  (critical isotherm) 
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at 1rt . We expand pr at tr=1 (T = Tc) in the vicinity of 1rv . 
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This is approximated by 
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in the region very close to the critical point, leading to the critical exponent (critical isotherm) 

 

3    (the mean-field exponent) 

 

(e) Thermal expansion coefficient 

The thermal expansion coefficient is given by 
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Around the critical point, we have 
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So that it is strongly divergent like TK . 

 

(f) Mean-field exponent relation 

From the above discussion, we find that the following relation is valid, 

 

22   , 

 

which is the same as that predicted from the mean-field theory. We also have the relation predicted from 

the mean field theory of phase transition, 
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These results imply that the van der Waals theory is one of the mean field theories. Well above the critical 

temperature there exists the short range order due to the attractive interaction between particles. On 

approaching the critical temperature, short range grows gradually. At the critical temperature, a part of 

short range order changes into the long range order. Well below the critical temperature, the long range 

order extends over the entire system. 

 

8. Scaled thermodynamic potential 

(a) Scaled Helmholtz free energy f 

Using the reduced variables, the Helmholtz free energy is given by 
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(b) The law of the corresponding states 

The pressure is given by 
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The reduced pressure pr is given by 
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(c) Scaled internal energy u 

The internal energy is determined by standard thermodynamics, 
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(d) Scaled entropy s 

The entropy S can be similarly determined by standard thermodynamics 
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In the adiabatic process (s = constant, isentropic process), we have 
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Note that for the ideal monatomic gas,  
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(e) Scaled Gibbs free energy g 

The Gibbs free energy G is given by 
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where s0 is the constant entropy. Note that the above equation gives g as a function of v and T. The natural 

variables for g are P and T,  
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We note that the Gibbs free energy can also be obtained by the following approach. 
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(f) Thermodynamics surface 

From the expression of u, the temperature T is calculated as 
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Thus u depends on v and s, 
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9. Mathematica program 

Method how to determine the values of characteristic reduced pressure and volume at a fixed 

reduced temperature 

 

The van der Waals equation is given by 
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0
)13(

246
23








r

r

rr

r

v

t

vv

p
. (2) 

 

(ii) Maxwell’s construction: 

 

13111 ),(),( pvtpvtp rr  , (3) 
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(iii) v1 (a), v2 (c), and v3 (e) are the roots of  
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Fig.14 The phase diagrams of pr vs vr fot rt =0.93. The area of closed path a-c-b-a is equal to that 

of the closed c-d-e-c. The path a-c-e is the coexistence line.  

 

For a fixed tr (= t1 <1), the locations of the points a and e can be determined from  

 

a: ),( 11 pv , c: ),( 12 pv , e: ),( 13 pv  

 

Clear "Global` " ; p0 t , v :
3

v2

8

3
t

v
1

3

;

Eq1 t , v1 , v3 : p0 t, v1 p0 t, v3 ;

Eq2 t , v1 , v3
3

v1

3

v3

8

3
t Log 1 3 v1 Log 1 3 v3

p0 t, v1 v3 v1 ;
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b: ),( 11 mm pv , d: ),( 33 mm pv . 

 

(a) Appropriate method to find boundary conditions for v1 and v3 

For a fixed reduced temperature tr, we determine the values of vm1 and vm3 from Eq.(2) using DSolve. 

The initial values v1’ for v1 and v3’ for v3 are obtained as follows. First calculate the value of v as average 

of vm1 and vm2 as 

 

)(
2

1
31 mm vvv  . 

 

The corresponding pressure is obtained as 

 

),( vtpp rr . 

 

Next we solve the equation 

 

),( rrr vtpp   

 

This equation has three roots, '1vv  , '3v , and v . Figure shows the pr vs vr curve at tr= 0.86.  

 

680031.01 mv , 68212.13 mv  

 

Then we have 

 

18107.1
2

31 


 mm vv
v ,

 

554593.0),(  vtpp rr . 

 

Using Eq.(1), we solve  

 

),( vtpp rr , 

 

and get the three solutions, 

 

559688.0'1 v , and 72774.2'3 v , 
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as well as the root ( 18107.1v ). The two outer ones (v1’, and v3’) are suitable boundary values. Note that 

these values are already close to the values which we are looking for; v1 = 0.561955 and v3 = 2.9545. 

 

 
 

Fig.15 How to get the boundary values. v1’ amd v3’ for finding the values of v1 and v3. 

 

(b) Subroutine program to determine the boundary values of v1 and v3. 

 

 
 

((Subroutine program to determine the values of v1m and v3m (local maximum and local minimum)) 

initial t ; t 1 :

Module v11, v31, v1, v2, v3, v, vi, eq11, eq12, eq21, eq22, t1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v ;

v11 v . eq12 1 ; v31 v . eq12 2 ;

eq21 NSolve p0 t1, v p0 t1,
v11 v31

2
, v ;

eq22 Sort v . eq21 1 , v . eq21 2 , v . eq21 3 ,

1 2 & ;

vi eq22 1 , eq22 3
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(c) Maxwell’s construction 

Using the initial values for v1 and v3, we determine the final values of v1 and v3 by using FindRoot 

for two equations, 

 

),(),( 31 vtpvtp rr  , (3) 
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with 
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(d) Determination of v2 

 

For each t = t1 (<1), we get the required values, 

 

a: ),( 11 pv , 

b: ),( 11 mm pv , 

d: ),( 33 mm pv . 

e: ),( 13 pv  

 

We also need the value of v2 for pr =  p1 at the point c. Using the equation 

 

13

83
21 


v

t

v
p  

Deriv1 t ; t 1 : Module v, eq11, eq12, eq2, t1, N1, h1, k1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v, Reals ;

N1 Length eq12 ;

h1 Table v . eq12 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3,

eq2 1 , eq2 2 , eq2 3 ; k1 2 , k1 3 ;
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Using Solve, we get the solution of this equation as v = v2, as well as v = v1 and v3. 

 

c: ),( 12 pv  

 

(e) Subroutine program to determine the value of v2 

 

 
 

(f) Subroutine program to determine the values of v1 and v3 at p1 based on the Maxwell 

construction 

 

 

FV2 t , p : Module v, g1, g2, t1, p1, N1, h1, k1, eq1, eq2 ,

t1 t;

p1 p;

g1 p0 t1, v ;

g2 g1 p1;

eq1 NSolve g2, v, Reals ;

N1 Length eq1 ;

h1 Table v . eq1 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3,

eq2 1 , eq2 2 , eq2 3 ;

LG1 t ; t 1 :

Module t1, eq1, v1, v2, v3, v11, v13, v21, v22, v23,

vm21, pm21, vm23, pm23, p1, p21 , t1 t;

v11, v13 initial t1 ;

eq1 FindRoot Evaluate Eq1 t, v1, v3 , Eq2 t, v1, v3 ,

v1, v11 , v3, v13 ;

v21 v1 . eq1 1 ;

v23 v3 . eq1 2 ;

p21 p0 t1, v21 ;

vm21 Deriv1 t1 1 ;

vm23 Deriv1 t1 2 ;

v22 FV2 t1, p21 2 ;

pm21 p0 t1, vm21 ;

pm23 p0 t1, vm23 ;

t1, p21, v21, pm21, vm21, v22, pm23, vm23, v23 ;
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((pr-vs vr curve for t<1)) 

pr can be expressed by 
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with the co-existence line (p1) between v1 and v3. 

 

(g) Subroutine program for the pr-vr phase with the coexistence line 

 

 
 

 
 

P3D t , v : Module t1, p1, v1, vm1, pm1, v2, vm3, pm3, v3, h1 ,

t1 t;

a 10;

t1, p1, v1, pm1, vm1, v2, pm3, vm3, v3 LG1 t1 ;

h1 x : Which 0.5 x v1, p0 t1, x , v1 x v3, p1,

x v3, p0 t1, x ;

v, h1 v , a 1 t1 ; P3U t , v : Module t1, h1 , t1 t;

h1 x : p0 t1, x ;

v, h1 v , a 1 t1 ;
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Fig.16 Maxwell’s construction. The phase diagram of pr vs vr at tr = 0.88. 

 

 
 

h11 ParametricPlot3D

Evaluate Table P3D t, v , t, 0.85, 0.999, 0.0025 ,

v, 0.35, 3 ,

PlotStyle Table Hue 0.01 i , Thick , i, 0, 70 ,

AspectRatio Full ; a 10;

h12

Graphics3D Thick, Red, Line 1 3, 0.5, 1.5 , 3, 0.5, 1.5 ,

Blue, Line 1 3, 0.5, 1.5 , 1 3, 1.2, 1.5 , Black,

Line 1 3, 0.5, 0 , 1 3, 0.5, 1.5 ,

Text Style "K", Black, 15 , 1, 1, 0 ,

Text Style "pr", Black, 15 , 0.4, 1.1, 1.5 ,

Text Style "vr", Black, 15 , 1.7, 0.45, 1.5 ,

Text Style "a 1 tr ", Black, 15 , 0.4, 1.2, 0.9 ;

h21 ParametricPlot3D

Evaluate Table P3U t, v , t, 1, 2, 0.0025 , v, 0.35, 3 ,

PlotStyle Table Hue 0.1 i , Thick , i, 0, 70 ,

AspectRatio Full ;

Show h11, h12, h21, PlotRange 1 3, 3 , 0.5, 1.2 , 0.2, 1.5
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Clear "Global` " ; p0 t , v :
3

v 2

8

3
t

v
1

3

;

Eq1 t , v1 , v3 : p0 t, v1 p0 t, v3 ;

Eq2 t , v1 , v3
3

v1

3

v3

8

3
t Log 1 3 v1 Log 1 3 v3

p0 t, v1 v3 v1 ;

initial t ; t 1 :

Module v1m, v2m, v3m, v1, v2, v3, v, vi, eq11, eq12, eq21, eq22, t1 ,

t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v ;

v1m v . eq12 1 ; v3m v . eq12 2 ;

eq21 NSolve p0 t1, v p0 t1,
v1m v3m

2
, v ;

eq22 Sort v . eq21 1 , v . eq21 2 , v . eq21 3 , 1 2 & ;

vi eq22 1 , eq22 3

FV2 t , p : Module g1, g2, t1, p1, N1, h1, k1, k2, eq1, eq2 , t1 t;

p1 p;

g1 p0 t1, v ;

g2 g1 p1;

eq1 NSolve g2, v, Reals ;

N1 Length eq1 ;

h1 Table v . eq1 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k2 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3, eq2 1 , eq2 2 , eq2 3 ;

Deriv1 t : Module v, eq11, eq12, eq2, t1, N1, h1, k1 , t1 t;

eq11 D p0 t1, v , v Simplify;

eq12 NSolve eq11 0, v, Reals ;

N1 Length eq12 ;

h1 Table v . eq12 i , i, 1, N1 ;

eq2 Sort h1, 1 2 & ;

k1 Which N1 1, eq2 1 , eq2 1 , eq2 1 , N1 2,

eq2 1 , eq2 1 , eq2 2 , N1 3, eq2 1 , eq2 2 , eq2 3 ;

k1 2 , k1 3 ;
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LG1 t ; t 1 :

Module t1, eq1, v1, v2, v3, v11, v13, v21, v22, v23, vm21, pm21,

vm23, pm23, p1, p21 , t1 t;

v11, v13 initial t1 ;

eq1 FindRoot Evaluate Eq1 t, v1, v3 , Eq2 t, v1, v3 ,

v1, v11 , v3, v13 ;

v21 v1 . eq1 1 ;

v23 v3 . eq1 2 ;

p21 p0 t1, v21 ;

vm21 Deriv1 t1 1 ;

vm23 Deriv1 t1 2 ;

v22 FV2 t1, p21 2 ;

pm21 p0 t1, vm21 ;

pm23 p0 t1, vm23 ;

t1, p21, v21, pm21, vm21, v22, pm23, vm23, v23 ;

MAX1 t :

Module , , t1, p1, v1, vm1, pm1, v2, vm3, pm3, v3, f11, f12,

g11, h11, J1 , t1 t;

t1, p1, v1, pm1, vm1, v2, pm3, vm3, v3 LG1 t1 ;

0.01, 0.017 ;

0.25, 0 ;

f11 Graphics Red, Thick, Line v1, p1 , v3, p1 ;

f12 Plot Evaluate p0 t1, v , v, 0.35, 4 , PlotStyle Blue, Thick ;

g11 Graphics Text Style "a", Italic, Black, 12 , v1, p1 ,

Text Style "b", Italic, Black, 12 , vm1, pm1 ,

Text Style "c", Italic, Black, 12 , v2, p1 ,

Text Style "d", Italic, Black, 12 , vm3, pm3 ,

Text Style "e", Italic, Black, 12 , v3, p1 ,

Text Style "tr " ToString t1 , Italic, Black, 12 , v3, p1 ;

h11

RegionPlot Evaluate v1 x v2 && p0 t1, x y p1,

v2 x v3 && p1 y p0 t1, x , x, 0.35, 4 , y, 0, 1 ,

PlotPoints 100,

PlotStyle Opacity 0.2 , Green , Opacity 0.2 , Green ,

PlotRange All ;

J1 Show f12, f11, g11, h11 ;
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S1 Show MAX1 0.98 , MAX1 0.96 , MAX1 0.93 , MAX1 0.90 , MAX1 0.87 ,

PlotRange All ;

f1 Table LG1 t , t, 0.5, 0.999, 0.001 ;

f1

TableForm ,

TableHeadings

None, "tr", "p1", "v1", "pm1", "vm1", "pm1", "v2", "pm3", "vm3",

"v3" &;

N1 Length f1 ;

g1 Table f1 i, 3 , f1 i, 2 , i, 1, N1 ;

g2 Table f1 i, 5 , f1 i, 4 , i, 1, N1 ;

g3 Table f1 i, 8 , f1 i, 7 , i, 1, N1 ;

g4 Table f1 i, 9 , f1 i, 2 , i, 1, N1 ;

J1 ListPlot g1, g2, g3, g4 , Joined True,

PlotStyle Table Hue 0.15 i , Thick , i, 0, 5 ,

PlotRange 0, 4 , 0.4, 1 ;

J2 Graphics Text Style "vr", Italic, Black, 12 , 3, 0.40 ,

Text Style "pr", Italic, Black, 12 , 0.3, 1.2 , Black, Thick,

Arrowheads 0.02 , Arrow 0, 0.5 , 4, 0.5 ,

Arrow 0.5, 0.1 , 0.5, 1.3 ;

Show S1, J1, J2, PlotRange 0, 4 , 0.1, 1.3
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_________________________________________________________________________ 

10. Maxwell construction using the Gibbs free energy 

(a) Maxwell construction for the vr-pr phase diagram 

Unfortunately we cannot conveniently put G into an analytic form as a function of P instead of V. We 

need 

 

),(),,( PTNNPTG  . 

 

It is  that determines the phase co-existence relation; gl   . At any T, the lowest branch represents the 

stable phase. The point a (vr = v1 = vl) and the point e (vr = v3= vg) are on the coexistence line denoted by 

the path a-c-e. 

 

J2 Graphics Text Style "K", Black, 12 , 1, 1.03 ,

Text Style "A", Black, 12 , 0.75, 0.55 ,

Text Style "B", Black, 12 , 1.9, 0.55 ,

Text Style "Liquid", Black, 12 , 0.65, 0.85 ,

Text Style "Gas", Black, 12 , 2.5, 0.68 ,

Text Style "vr", Italic, Black, 12 , 3.2, 0.55 ,

Text Style "pr", Italic, Black, 12 , 0.50, 1.2 , Black, Thick,

Arrowheads 0.02 , Arrow 0, 0.5 , 4, 0.5 ,

Arrow 0.5, 0.1 , 0.5, 1.3 , PointSize 0.010 , Point 1, 1 ;

Show MAX1 0.90 , J1, J2
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Fig.17 The vr vs pr phase diagram with a fixed reduced temperature tr (in this case tr = 0.96). The 

area a-b-c-a is equal to the area e-d-c-e. (Maxwell construction) 

 

The reduced volumes v1 and v3 are determined by the condition that 

 

),(),( rrgrrl ptpt   , 

 

along the horizontal line between v1 and v3. This will occur if the shaded area below the line is equal to 

the shaded area above the line. 

 

dNVdPSdTdG  . 

 

For N = const. and T = constant, 

 

rrdpvdg  , 

 

for the scaled Gibbs free energy, and 

 

 rrlg dpvgg . 

 

The integral is just the sum of the shaded area (Maxwell construction). 
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(b) Maxwell construction for the pr vs vr phase diagram 

 

 
 

Fig.18 The phase diagram of vr vs pr at tr = 0.96. 

 

At 1ttr  , 

 


p

p

rrrarr

a

dptpvptgpttg ),(),(),( 111 , 

 

We assume that epp 0  (the pressure at the point e). Then we have 

 

 
cde

rrr

abc

rrraer dptpvdptpvptgpttg ),(),(),(),( 1111 , 

 

Since ),(),( 11 ea ptgptg  , we have 

 

0),(),( 11  
cde

rrr

abc

rrr dptpvdptpv , 
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or 

 

 
bc

rrr

ab

rrr

dc

rrr

ed

rrr dptpvdptpvdptpvdptpv ),(),(),(),( 1111 . 

 

We note that 

 

0),( 1 
ed

rrr dptpv ,  
cd

rrr

dc

rrr dptpvdptpv ),(),( 11  

 

and 

 

0),( 1 
bc

rrr dptpv ,  
ba

rrr

ab

rrr dptpvdptpv ),(),( 11 . 

 

Then we have 

 

 
ba

rrr

bc

rrr

cd

rrr

ed

rrr dptpvdptpvdptpvdptpv ),(),(),(),( 1111 , 

 

which means that the area of the region e-d-c is the same as that of the region a-b-c. Note that 

 

1pppp eca  . 

 

It is only after the nominal (non-monotonic) isotherm has been truncated by this equal area construction 

that it represents a true physical isotherm.  

In summary, In the pr vs vr phase diagram,  

 

(i) The a-c-e- is the coexistence line ( 1ppr   and 1ttr  ) of the liquid phase and the gas phase. 

(ii) The area (a-b-c-a) is the same as the area (c-d-e-c) [Maxwell construction]. 

(iii) K is the critical point (pr = vr = tr = 1). 

(iv) The line KA and the line AB are the spinodal lines. 
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Fig.19 The phase diagram of pr vs vr at tr = 0.96. 

 

(c) Example: the area for the vr vs pr and the area for the pr vs vr for tr = 0.95 
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Fig.20 pr vs vr curve at tr = 0.95. a: (v1, p1); b (v1m, p1m), c (v2, p1), d (v3m, p3m), e (v3, p1). Maxwell 

(equal-area) construction. The pressure p where two phase coexistence begins for tr = 0.95 

is determined so that the areas above(c-e-d) and below the horizontal line (a-b-c) are equal. 

In this case, p = 0.811879 (the pressures at a and e). 

 

tr = 0.95 p1 = 0.811879,  

v1= 0.684122,  v2 = 1.04247  v3 = 1.72707 

 

v3m = 1.33004,  p3m = 0.845837 (local maximum point) 

v1m = 0.786967, p1m = 0.74049  (local minimum point) 

 

313223.0),( 1 vtg r .  319189.0),( 3 mr vtg  

307563.0),( 1 mr vtg  

 

(d) The Gibbs energy at the critical point (K) 

Let us plot the pr-vr plane an isotherm of the liquid and gas. According to the thermodynamic 

inequality we have 

 

0



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







rt
r

r

v

p
,  

 

which implies that pr is a decreasing function of vr. The segments a-b and d-e of the isotherms correspond 

to metastable super-heated liquid state and super-cooled vapor state, in which the thermodynamic 

inequality is still satisfied. 

A complete-equilibrium isothermal change of state between the points a and e corresponds to the 

horizontal segment a-c-e, on which separation into two phases occur. If we use the fact that the points a 

vr

pr

a

b
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d

e

tr 0.95
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and e have the same ordinate 1ppr  , it is clear that the two parts of the isotherm cannot pass continuously 

into each other: there must be a discontinuity between them. 

The isotherms terminates at b and e, where  
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p
. 

 

Curve A-K-B on which the thermodynamic inequality is violated for a homogeneous body; boundary of 

a region in which the body can never exist in a homogeneous state. 

Near the critical point, the specific volumes of the liquid and gas are almost the same, denoting them 

by vr and vr +  vr, we can write the condition for equal pressure of the two phases 

 

),(),( rrrrrr tvvptvp  , 

 

or 
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Hence we see that, when 0rv  (at the critical point), 
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
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p
. 

 

(e) Properties of the Gibbs free energy in the metastable state and unstable state 

To see the qualitative behavior of the Gibbs function ),( rr ptg  as a function of rp , we use the relation 
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r

r
p

g
v )(




 , 

 

or 
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0

),(),( 0 . 
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On the ),( rr ptg  curve as a function of rp , rv  represents the slope, 
rt

rp

g
)(




: 

 

rt

r

r
p

g
v )(




 . 

 

We take the van der Waals isotherm a-b-c-d-e in the pr-vr diagram. We make a plot of the corresponding 

),( rr ptg curve as function of rp   at tr = t1 (in this case, tr = 0.95). 

 

 
 

Fig.21 Gibbs free energy as a function of pr at tr = 0.95. 
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expressed by using the Taylor expansion, as 
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 become infinite at the point d. Then ),( 1 rptg  curve has a cusp. 
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So that 
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 become infinite at the point b and ),( 1 rptg curve has another cusp. 

(iv) From l to b (on the path l-a-b). 
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 is negative, but 

becomes small as the point l is approached.  

 

In summary, the path d-c-b corresponds to unstable region and the paths e-d and b-a are metastable. 

 

(f) Numerical calculation 

We can make a plot of g vs pr where tr is fixed, using the ParametricPlot of the Mathematica. The 

scaled Gibbs free energy g and the reduced pressure rp  are given by 
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So we make a ParametricPlot of the co-ordinate ),( gpr  when tr is given as a fixed parameter and vr is 

continuously changed as a variable. The Mathematica which we use is as follows. 

 

((Mathematica)) 



58 

 

 

 

(i) tr = 0.99 

The pr dependence of the scaled Gibbs energy is shown below. We note that the scaled Gibbs energy 

is the same at the points a and e. The Gibbs energy along the path a-b (the metastable state), along the 

path b-c-d (the unstable state), and along the path d-e is higher than that along the path l (liquid)-a and 

along the path e-g (gas). This means that the coexistence line (a-c-e) is the equilibrium state. It is seen that 

the Gibbs free energy vs pr shows a thermodynamically invisible bow tie. 
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Fig.22 vr vs pr for tr = 0.99. The line a-c-e is the co-existence line between the gas and liquid 

phases. K: critical point. The lines A-K and B-K are spinodal lines. The path a-c-e is the 

co-existence line of the liquid and gas phases. 
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Fig.23 Scaled Gibbs free energy g vs pr for tr = 0.99. g is in the units of (a/b). The path b-c-d is 

unstable. p1 = 0.960479. pm1 = 0.955095 (point b). pm3 = 0.964369 (point d) 
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Fig.24 The phase diagram of pr vs vr for tr = 0.99. v1 = 0.830914 (point a). v3 = 1.24295 (point e). 

p1 = 0.960479. 

 

________________________________________________________________________ 

(ii) tr = 0.98 
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Fig.25 vr vs pr for tr = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The 

path a-b and the path d-e is unstable. The area enclosed by a-b-c is the same as that by c-

d-e (Maxwell construction). p1 =0.921912. v1 = 0.775539. v3 = 1.3761. 
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Fig.26 Scaled Gibbs energy g (in the units of a/b) vs pr for tr = 0.98. The path b-c-d is unstable. 

The shape of the b-c-d is similar to spine (the spinodal decomposition). The path a-b and 

the path d-e are unstable. p1 = 0.921912. pm1 = 0.905756 (point b). pm3 = 0.932089 (point 

d). 
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Fig.27 pr vs vr for tr = 0.98. The line a-c-e is the coexistence line. The path b-c-d is unstable. The 

path a-b and the path d-e are metastable. The area enclosed by a-b-c-a is the same as that 

by c-d-e-c (Maxwell's construction). p1 =0.921912. v1 = 0.775539. v3 = 1.3761. 

 

__________________________________________________________________ 

(iii) tr = 0.97 
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Fig.28 Phase diagram of vr vs pr at tr = 0.97. 

 
 

Fig.29 Gibbs free energy as a function of pr at tr = 0.97. p1 = 0.884294. pm1 = 0.853279. pm3 = 

0.901849. 
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Fig.30 Phase diagram of pr vs vr at tr = 0.97. 

_______________________________________________________________________________ 

(iv) tr = 0.96 

 

 
 

Fig.31 Phase diagram of vr vs pr at tr = 0.96. 
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Fig.32 Gibbs free energy as a function of pr at tr = 0.96. p1 = 0.847619. pm1 = 0.798108. pm3 = 

0.873186. 

 

 
 

Fig.33 Phase diagram of pr vs vr at tr = 0.96. p1 = 0.847619. v1 = 0.708189. v3 = 1.61181. 

 

(g) Plot3D of the Gibbs free energy g(tr, pr) 
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We make a Plot3D of g(tr, pr) in the (tr, pr) plane by using the Mathematica. 

 

 
 

Fig.34 Gibbs surface for the van der Waals gas in the vicinity of the critical point. We use the 

Mathematica (ParametricPlot3D). 

 

As tr is raised and v3-v1 diminishes, the two branches L-a-b and d-e-G intersect more and more nearly 

tangentially. The cusped region becomes steadily smaller until at the critical temperature the curve 

degenerates into a single continuous curve. Just at the critical temperature the gradient of the curve, which 

is equal to vr, is everywhere continuous, but the curvature 
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 becomes momentarily infinite at the 

critical pressure, since at this point the van der Waals gas is infinitely compressible. Above the critical 

temperature, the curves for g are everywhere continuous in all their derivatives. Here we show the 

ParametricPlot3D for )},(),,(,{ rrrrr vtgvtpt  in the vicinity of the critical point.  

 

((Mathematica)) 
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(g) Proof of Maxwell construction by Enrico Fermi 

We find this proof in the book by E. Fermi (Thermodynamics). It seems that this proof is much 

simpler than the Maxwell construction based on the Gibbs free energy and Helmholtz free energy. The 

area of closed path a-b-c-a is equal to that of the closed path c-d-e-c. We show that the work done on the 

system W during a reversible isothermal cycle is equal to zero. We now consider the reversibly isothermal 

cycle a-b-c-d-e-c-a. According to the first law of thermodynamics 

 

  PdVdQdUU , 
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
For a reversible cycle, we have 
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dQ
dS . 

 

In this case, the cycle is isothermal. So we can remove 1/T from under the integral sign, 
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f1 ParametricPlot3D Evaluate tr, p0 tr, vr , g1 tr, vr ,

tr, 0.85 , 0.999 , vr, 0.4, 10 ,

PlotStyle Green , Red , Opacity 0.12 ,

PlotRange 0.85 , 0.999 , 0, 1 , 0.2, 0.4 , Mesh 10 ;

f2 Graphics3D Black , Thick , Arrowheads 0.015 ,

Arrow 0.85 , 0, 0.20 , 0.99 , 0, 0.20 ,
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Text Style "g tr,pr ", Italic , Black , 20 , 0.85 , 0, 0.41 ;
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70 

 

Then we have 

 

0 PdV . 

 

This integral consists of two parts, 

 

0  cdecabca
PdVPdV , 

 

or 

 

 
cedcabca
PdVPdV , (Maxwell construction), 

 

since 

 

 
cedccdec
PdVPdV , 

 

which is positive. 

 

11. Double-tangent construction based on Helmholtz free energy 

Maxwell construction based on the Gibbs free energy is equivalent to the double-tangent construction 

based on the Helmholtz free energy. Here we discuss the double-tangent construction using the concept 

of the Helmholtz free energy. 

(a) Double-tangent line (coexistence line) 

Using the relation 
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the Helmholtz free energy can be obtained as 
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The Helmholtz free energy is related to the Gibbs free energy as 
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According to the Maxwell construction from the Gibbs free energy, we have 

 

31 gg  , 

 

at the point a ( 1ppr  , 1vvr  ) and point e ( 1ppr  , 3vvr  ), where 

 

1111 vpfg  ,  at the point a, 

 

3133 vpfg  , at the point e. 

 

In the diagram of f vs rv  the point a is located at the co-ordinate (v1, f1), while the point e is located at the 

co-ordinate (v3, f3). Note that the point a and point b are on the coexistence line in the pr vs vr diagram for 

tr<1. The straight line (double-tangent line) connecting the points a and e can be given by 
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We note that  
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The reduced pressure p1 corresponds to a negative of the slope of the straight line (the double-tangent line) 

connecting the point a and the point e. We note that 
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fDT . 

 

We make a plot of the reduced Helmholtz free energy as a function of the reduced volume vr at fixed 

temperature (in this case tr = 0.85). The double-tangent line is denoted by the straight line connecting the 

points a and e. The tangential line at the point a coincides with that at the point e. Note that the Helmholtz 

free energy at fixed tr is higher than the corresponding double-tangent line between v1 and v3. This means 

that this double tangent line is the coexistence line between the points a and e.  
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Fig.35 The isothermal Helmholtz energy f as a function of the reduced volume. tr = 0.85. The 

Helmholtz free energy has two inflection points at the point b and the point d below the 

critical point. The double-tangent line (the straight line a-e) represents coexisting vapor 

and liquid phases. The Helmholtz free energy with double-tangent line (the path a-e) is 

lower than the metastable (the path a-b and the path d-e) and unstable part (the path b-c-d) 

between v1 (the point a) and v3 (the point e); double-tangent construction. v1 = 0.55336. v3 

= 3.12764. p1 = 0.504492. 
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(a) 

 

 
 

(b) 

 

Fig.36 (a) and (b) 

Tangential line (green line) of the Helmholtz free energy vs vr, corresponding to – pr at fixed 

reduced temperature tr (= 0.8, in this case). The double-tangent line (black line) is the co-existence 

curve with 1ppr   between vr = v1 (the state a) and v3 (the state e). The tangential line at the point 

a, coincides with that at the point e. v1 = 0.517409. v2 = 1.20827. v3 = 4.17246. 
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Fig.37 ),( rr vtf  vs vr at each fixed reduced temperature tr (tr = 0.75, 0.80, 0.85, 0.90, and 0.95). 

The double-tangent lines are also denoted by the black straight lines connecting between 

the point a and the point e.  

 

(b) Pressure as a function of the reduced volume 

The reduced pressure is given by 
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using the Helmholtz free energy. The reduced pressure pr is plotted as a function of the reduced volume 

(tr = 0.85). Above the critical point, as vr increases, the Helmholtz free energy decreases, corresponding 

to the monotonic decrease in pr vs vr. This is a typical of any temperature above the critical point. Below 

the critical point, we see that the path l (liquid)-a and the path e-g (gas) in which the reduced pressure 

decreases monotonically as vr increases. These are joined by a straight line. The path a-e touching the path 

l-a at the point a and touching the path e-g at the point e. The three portions correspond to the liquid phase, 

to the gas phase, and to a two-phase liquid-gas system. This typically happens when tr<1. Note that the 

path a-b represents superheated liquid. The path d-e represent super-cooled vapor. We see that all states 

represented by these portions of curves are metastable.  
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Fig.38  
rtrr vfp  /  as a function of vr. tr = 0.85. The path a-c-e is the coexistence boundary. 

 

(c) Metastable state and unstable state 
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Fig.39  
rtrvf

22 /   as a function of vr. tr = 0.85.   0/
22 

rtrvf  for the path b-c-d, indicating 

that the curve f vs vr is concave upwards (unstable).   0/
22 

rtrvf  for the path a-b and 

path d-e, indicating that the curve is concave downwards (metastable). 

 

The Helmholtz free energy of the superheated liquid (the path a-b) or the supersaturated vapor (the path 

d-e) is greater than that for the double-tangent line. The portions curve a-b and d-e are in the metastable 

state. They have curvature concave upwards so that  
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because of the definition of mathematics, 
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We note that the path b-c-d has a curvature concave downwards. This would correspond to a positive 

value of 
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leading to unstable states. Such states are not realized. 

Since the tangent line )( rvf  maintains the same slope between v1 and v3, the pressure remains constant 

between v1 and v3: 
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In other words, the line connecting points on the rr vp   plot is horizontal and the two coexistence phases 

are in thermal equilibrium. For each temperature below tr = 1, the phase transformation occurs at a well-

defined pressure p1, the so-called vapor pressure. Two stable branches g (gas)-e-d and b-a-l (liquid) 

correspond to different phases: the branch g-e-d (gas phase) and the branch b-a-l (liquid phase). The 

branch e-c-a is the co-existence line between the gas phase and liquid phase. The branch e-d is a metastable 

gas phase, while the branch b-a is a metastable liquid phase. 

 

(d) Difference DTfff   

Here we define as 
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where DTf  is given by 
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for the double-tangent line. Since 0/),(
22  rrrDT vvtf , it follows that 

 
2222 /),(/),( rrrrrr vvtfvvtf  . 

 

The plots of f  vs vr is shown for the range (v1<v<v3), where tr is changed as a parameter. We note that 

the difference f is equal to zero at vr = v1 and v3. It shows a peak at vr = v2. We show the deviation f

vs vr between v1 and v3 at tr = 0.95. The points a (vr = v1), b, c (vr = v2), d, and e (vr = v3), are shown in this 

figure. 0/
22  rvf  for the path a-b (the superheated state) and the path d-e (the super-cooled state). 

0/
22  rvf  for the path b-c-d (unstable state). 
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Fig.42 (a), (b), and (c) The deviation f vs vr between v1 and v3 at tr = 0.95. The points a (vr = v1), 

b, c (vr = v2), d, and e (vr = v3), are shown in this figure. 0/
22  rvf  for the path a-b (the 

superheated state) and the path d-e (the super-cooled state). 0/
22  rvf  for the path b-

c-d (unstable state). 
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Fig.43 ),( 1vtf r , ),( 1mr vtf , ),( 2vtf r , ),( 3mr vtf , and ),( 3vtf r  as a function of tr. Note that v1, vm1, 

v2, vm3, and v3 are dependent on tr according to Maxwell construction or double-tangent 

construction. 

 

(e) The lever rule for the Helmholtz free energy 

The straight line connecting the point a and the point e is given by 
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where 31 vvv  . This can be written as 
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or 
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corresponding to the lever rule for the reduce volume, where 
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f can be written as 
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which is the straight line passing through the two points ),( 11 fv  and ),( 33 fv . We recognize this as the 

common tangent line. 
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and 
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(f) Summary 

According to the Maxwell relation 
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the Helmholtz free energy can be obtained as the area under the isotherm: 

 


isotherm

rrrr dvpvtf ),( . 

 

Note that v1 and v3 are defined by the double-tangent construction. At any point along the tangent, the 

Helmholtz free energy is a linear combination of those at a and e, and thus represent a mixture of the 

liquid and gas phases. Note that the value of ),( rr vtf  for 31 vvv r   is larger than that on the double 

tangent line, as is obvious from the graphical construction. Thus the phase-separated state is the 

equilibrium state. The states a and e are defined by the condition 
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For local stability at any point the curve ),( vTf  must always lie above its tangent, and for global stability 

this tangent must not cut the primitive ),( vTf  curve at any other point. If it does, the substance will split 

into a mixture of two phases with values of volume v1, v2 corresponding to the two points of contact of 

the tangent. The double-contact tangent corresponds to the co-existence of two phases in equilibrium.  

 

12. Critical behavior of v1 and v3 around the critical point 

We make a plot of the values of characteristic reduced volumes (v1, vm1, vm3, and v3) as a function of 

tr for tr≤1.  

 

 
 

Fig.44 tr vs v1, tr vs vm1, tr vs vm3, and tr vs v 3 with v1 and v3 lines (bimodal lines) and vm1 and vm3 lines 

(spinodal lines). 

 

(a) The least squares fitting of 1)(
2

1
31  vvv  vs    

(i) The result of 1)(
2

1
31  vvv  vs    (for 010.00   ) is best fitted by a polynomial given 

by 

 

432

31 5431.418942.1913377.96.31)(
2

1
  vvv . 
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Fig.45 1)(
2

1
31  vvv  vs    (for 010.00   ). 

 

(ii) The result of 1)(
2

1
31  vvv  vs    (for 001.00   ) is best fitted by a straight line given 

by 

 

64535.31)(
2

1
31  vvv , 

 

 
 

Fig.46 1)(
2

1
31  vvv  vs    (for 001.00   ). 
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(b) The least squares fitting of )(
2

1
13 vvv   vs    

(i) The result of )(
2

1
13 vvv   vs    (for 010.00   ) is best fitted by a polynomial given by 

 

2/52/32/1

13 174.1487746.5000.2)(
2

1
  vvv  

 

 
 

Fig.47 )(
2

1
13 vvv   vs    (for 010.00   ) 

 

(i) The result of )(
2

1
13 vvv   vs    (for 001.00   ) is best fitted by a polynomial given by 

 

501368.0

13 02437.2)(
2

1
 vvv  
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Fig.48 )(
2

1
13 vvv   vs    (for 001.00   ). 

 

13. Lever rule for the reduced volume in the coexistence line 

At the point e the substance is entirely in the gas phase with volume v1; at the point a, it is entirely in 
the liquid phase with volume v1. At any point on the line a-c-e (the coexistence line), the reduced volume 

can be described by 

 

3311 vvv   , 

 

using the lever rule, where 1 is the fraction of the liquid phase and 3 is the fraction of the gas phase, 

 

131  . 

 

Then we have 
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For 1vv  , 11   and 03    (the pure liquid phase). 

For 3vv  , 01   and 13  . (the pure gas phase). 

 


