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The Clausius–Clapeyron relation, named after Rudolf Clausius and Benoît Paul Émile 

Clapeyron, is a way of characterizing a discontinuous phase transition between two phases of 
matter of a single constituent. On a pressure–temperature (P–T) diagram, the line separating the 
two phases is known as the coexistence curve. The Clausius–Clapeyron relation gives the slope of 
the tangents to this curve. Mathematically, 
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The derivation of this equation was a remarkable early accomplishment of thermodynamics. Both 
sides of this equation are easily determined experimentally. The equation has been verified to high 
precision. 
 
1. Phase diagram of water 

The P-V phase diagram of the water is shown below. 

 
 



Fig. The phase diagram of H2O showing the solid (ice), liquid (water) and gaseous (vapor) 
phases. The horizontal dashed line corresponds to atmospheric pressure, and the normally 
experienced freezing and boiling points of water are indicated by the open circles. 

 
Critical point: 
 

Tc = 647.1 K,  Pc = 218 atm = 22.08 MPa 
 
Triple point: 
 

Ttr = 273.16 K  Ptr = 4.58 Torr= 0.00602632 atm 
 

The phase diagram of H2O is divided into three regions, indicating the conditions under which 
ice, water, or stream, is the most stable phase. A phase diagram of water shows the solid, liquid 
and gaseous phases. The three phases coexist at the triple point. The solid-liquid phase boundary 
is very steep, reflecting the large change in entropy in going from liquid to solid and the very small 
change in volume. This phase boundary does not terminate, but continues indefinitely. By way of 
contrast, the phase boundary between liquid and gas terminates at the critical point.  
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Latent heat at gas-liquid transition 
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1 cal = 4.184 J, H2O = 18 g/mol 

 
L0 = 2264.76 J/g = 9.7228 kcal/mol = 540 cal/g 

 
Phase diagram of H2O 
 



 
 
Fig. Phase diagram of water. 1 atm = 1.01325 x 105 Pa = 1.01325 bar. Critical point (647.1 K, 

218 atm). Triple point (273.16 K, 4.58 Torr). 
 
https://en.wikipedia.org/wiki/Phase_diagram 
 



 
 

Table: The vapor pressure and molar latent heat for the solid-gas transformation (first three 
entries) and the liquid-gas transformation (remaining entries). Data from Keenan et al. 
(1978) and Lide (1994). 

 

 
 
2. Derivation of Clausius-Clapeyron equation from the Carnot cycle (Adkins) 
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Typical curves for the P-T phase diagram in the van der Waaks gas are sketched below. Two 

temperatures are taken to be close together, TTT 1  and TT 2 . Now we can carry out a 

Carnot cycle using these two neighboring isotherms. Starting at 1, where the system is just all 

liquid and the temperature is TTT 1 , the cycle is as follows. 

1→2: isothermal expansion during which the liquid evaporates. The evaporation requires latent 
heat, so that the heat Q1 is absorbed in the system. 

2→3: A small adiabatic expansion during which the temperature falls by the small amount dT; 

TT 2  

3→4: An isothermal compression to the point where all the vapor is condensed. Latent heat 2Q  is 

rejected. 
4→1: A small adiabatic compression during which the temperature rises by T  back to 

TTT 1  

 

 
 
Fig. The gas-liquid co-existence in the P vs V curve for the van der Waals gas. 
 
Carnot cycle 

 

Path 1→2: isothermal process at the temperature  TTT 1  

Path 2→3: isentropic process 

Path 3→4: isothermal process at the temperature  TT 2  



Path 4→1: isentropic process 
 
The work done by the system is 
 

VPW   
 
where V  is the volume difference between the points 3 and 4, and the work corresponds to the 
area of closed rectangle path (1→2→3→4→1). The efficiency of the Carnot cycle is given by 
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Thus we have 
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where  LQ 1   (the latent heat) 

 
Then we get the Clausius-Clapeyron equation; 
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3. Thermal equilibrium: chemical potential 

Thermodynamic conditions for the co-existence of two phases are the conditions for the 
equilibrium of two systems that are in thermal, diffusive and mechanical contact. 
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For liquid and gas 
 

TTT gl  ,  gl   , PPP gl  . 

 
The chemical potential: 
 

),(),( TPTP gl    

 
At a general point in the P-T plane the two phases do not co-exist. 

If gl   , the liquid phase alone is stable. 

If lg   , the gas phase alone is stable. 

 
((Note)) Metastable phases may occur, by supercooling or superheating. 
 
4. Derivative of the co-existence curve, P vs T: 
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This is a condition of co-existence. We start with an equation 
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We make a series expansion 
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In the limit as dP and dT approach zero, 
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This may be rearranged to give 
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Fig. Condition for the thermal equilibrium. On the curve of co-existence, ).,('),( TPGTPG   

 
In the Gibbs free energy 
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Thus we have 
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Since ),( TPNG  , we have 
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where v is the volume per molecule and s is the entropy per molecule. Then we have 
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5. Derivation of Clausius-Clapeyron equation from Gibbs-Duhem relation 

 
The Gibbs energy: 
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Since NG  , this equation can be rewritten as 
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Suppose that two phases 1 and 2 are in-contact and at equilibrium with each other. The chemical 
potentials are related by 
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Furthermore, along the co-existence curve, 
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Here we use the Gibbs-Duhem relation, 
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6. Clausius-Clapeyron equation 
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l : latent heat of vaporization/molecule 
 

lg vvv   

 
Thus we have the Clausius-Clapeyron equation, 
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Two approximations: 
 

(a) lg vv   
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(b) 
 

TkNPV Bgg    (ideal gas law) 

 
or 
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Using these two approximations, we have 
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Suppose that the latent heat l is independent of T; 
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where L0 is the latent heat of vaporization of one molecule. If 0L  refers instead to one mole, then  
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where 
 

R = 8.3144598 [J/(K mol)]. AL lN . 

L = 2256 x 18.01528 = 40.642 (kJ/mol): latent heat of vaporization/mol for water: 
 
7. Phase diagram of H2O and Clausius-Clapeyron equation 

 



 

 



 

 

Fig. Phase diagram of H2O. The relationships of the chemical potentials s , l , and g  in the 

solid, liquid, and gas phases are shown. The phase boundary here between ice and water is 
not exactly vertical: the slope is actually negative, although very large. (Kittel, Thermal 
Physics). 

 

For the transition between vapor (gas) and water (liquid), experimentally we have 
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Since lg vv  , we get 
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For the transition between ice (solid) and water (liquid), experimentally we have 
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((Note)) ls vv   for water 

The liquid state of a substance occupies more volume than the solid state for same substance 
with the same mass. A notable exception to this rule is water, which is actually less dense in its 
solid form than its liquid form (this is why ice floats in water). This is due to the hydrogen bonding 
that occurs between molecules of H2O. Because the hydrogen bonds formed in water are perfectly 
structured (just the right number of oxygen atoms to interact with the hydrogen atoms), as a solid 
water forms a lattice structure that spaces out the molecules more than they would be in liquid 
form.  
 

 
 
Since ls vv  , we get 
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In summary, we have 
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8. Phase diagram of liquid 4He 

 

 

 



 
 



 
 

 
 

Fig. Phase diagram of 4He. 
 



The Clausius-Clayperon equation is also applied to the solid-liquid transition 
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In the phase diagram of 4He, the liquid-solid co-existence curve is closely horizontal for T<1.4 K. 
 

  sl ss   

 
Note that the entropy of a normal liquid is considerably higher than that of a normal solid. 

At low temperatures (T ≈ 0.8 K) the melting curve exhibits a shallow minimum, which is not 
deep enough to be visible on the scale of the phase diagram of 4He,. Using the Clausius Clapeyron 
equation curve, we can draw conclusions about the entropies of liquid and solid 4He. Since ls vv  , 

we have 
 

sl ss   

 
which means that the entropy of the solid phase is larger than the entropy of the liquid phase. In 
other words, the disorder in the solid is larger than in the liquid. The entropy of solid and liquid 
4He is determined by thermal excitations in this temperature range. It turns out that solid 4He has 
a slightly higher phonon heat capacity than liquid 4He, because of the low transverse sound velocity 
in solid 4He. Therefore, at low temperatures the entropy of solid 4He is larger than that of liquid 
4He. 
 
9. Phase diagram of liquid 3He 

 



 

 



 

 

 



 
 

Fig. Phase diagram of 3He. 



 
Fig. Phase diagram of 3He. 
 
The Clausius-Clapeyron equation, 
 

0




sl

sl

vv

ss

dT

dP
 

 

Since sl vv  , we have 

 

sl ss  .  

 
The entropy of liquid is less than the entropy of the solid.  
 



 
 
The solid has more accessible states than liquid. Liquid 3He has a relatively low entropy for a 

liquid because it approximates a Fermi gas, which generally has a low entropy when FTT  , 

because a large portion of the atoms have their momenta ordered into the Fermi sphere. 
The Grand potential: 
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The entropy: 
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10. Latent heat and enthalpy 

 



 

 

When we cross the co-existence curve ( lg   ) 
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The enthalpy H is defined by 
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At constant pressure ( 0dP ) 
 

lg HHHVPESTL   

 
Values of H are tabulated, 
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11. Example-1 (Kittel 10-3) 

Calculation of dPdT ./  

Calculate from the vapor pressure equation the value of dT/dP near P = 1 atm for the liquid-
vapor equilibrium of water. The heat of vaporization at 100 C is 2260 J/g. Expain the result 
in K/atm. 

 
((Solution)) 
 
Clausius-Clapeyron equation: 
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where R is the gas constant, 
 

R=8.3144598 J/(mol K) = 1.9872036 cal/(mol K) 
 
L is the latent heat of vaporization /mol. 
 

7.40764/005.9743/705.2264  molcalgJL J/mol 

 
For T = 373 K and P = 1 atm, we get 
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12. Example-2 (Kittel 10-3) 

Heat of vaporization of ice 

The pressure of water vapor over ice is 3.88 mmHg at -2 C and 4.58 mmHg at 0 C. Estimate 
in J/mol the heat of vaporization of ice at -1 C. 

 
((Solution)) 
 
Clausius-Clapeyron equation 
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leading to 
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For the two points ),( 11 TP  and ),( 212 TP  on the curve given by Eq.(1), 
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13 Example 3 (Huang problem 4-5) 

Clausius-Clapeyron on liquid 3He 

(a) In a liquid-[gas transition, the specific volume of the liquid (phase 1) is usually 
negligible compared with that of the gas (phase 2), which usually can be treated as an ideal 

gas. let )( 12 ssTl   be the latent heat of evaporation per particle. Under the 

approximation mentioned, show that 
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(b) Use this formula to obtain the latent heat per unit mass for liquid 3He, in 0.2 K 
increments of T, from the following table of vapor pressures of 3He. The mass of a 3He is 
 

gum  10007.50160293.3 24 . 

 
T(K)  P(microns of Hg) 
0.200  0.0121 
0.201  0.0130 
0.400  28.12 
0.401  28.71 
0.600  544.5 
0.601  550.3 
0.800  2892 
0.801  2912 
1.000  8842 
1.005  9053 
1.200  20163 
1.205  20529 

 
((Solution)) 
 
Clausius-Clapeyron equation 
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Equation of state for the ideal gas: 
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 BAkNR 8.3144598 x 107 erg/(K mol) 
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Fig.1 Plot of lnP vs 1/T. 



 

 
 
Fig.2 Plot of )/1(/ln TdPd  vs T 



 
 
The latent heat can be obtained from the value of )/1(/ln TdPd  at each temperature. 

 
T = 0.2 K  slope = 3.0  l 8.15 x 107 (erg/g) 
T = 0.4 K  slope = 3.4  l 9.24 x 107 (erg/g) 
T = 0.6 K  slope = 3.9   l 10.60 x 107 (erg/g) 
T = 0.8 K  slope = 4.4  l 11.95 x 107 (erg/g) 
T = 1.0 K  slope = 4.8  l 13.04 x 107 (erg/g) 
T = 1.2 K  slope = 5.2  l 14.13 x 107 (erg/g) 

 
14 Example 4 (Blundell-Blundell 28-6) 

It is sometimes stated that the weight of a skater pressing down on their thin skates is enough 
to melt ice, so that the skater can glide around on a thin film of liquid water. Assuming an ice rink 
at -5° C, do some estimates and show that this mechanism will not work. (In fact, frictional heating 
of ice is much more important, see S.C. Colbeck, Am. J. Phys. 63, 888 (1995) and S.C. Colbeck, 
L. Najarian, and H.B. Smith Am. J. Phys. 65, 488 (1997).) 
 
((Solution)) 
 

31000.1 l  kg/m3,  310917.0 s  kg/m3, 
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where 
 

1 atm = 1.01315 x 105 Pa. 
 
For a very heavy skater (100 kg), only making the contact with ice over an area 10 cm x 1 mm = 
10-4 m2. 
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Then 
 



 
 

Fig. TP (triple point): T = 0 C (273.16 K) and P = 0.00637 atm. The stating point : T = -5 C 
and P = 1 atm.  

 
 

We now suppose that the temperature is -5 C. At 1 atmosphere, the ice is in the state  on the P-T 
plane. There is no water present. When the ice skater puts pressure on the ice, the state moves 
along the constant temperature line (   ). In theory, as soon as the phase boundary is 

reached at the state , some ice melts so that the edge of the skate sinks in fractionally, with the 

load now spread over a large area stabilizing the pressure. The state thus remains fixed at , with 
the liberated water acting as a lubricant.  

The question must be asked: Is 106.7 atm or so sufficient to achieve this goal? From  
 


dT

dP
 -132.2 atm/K. 

 

TP

Log P atm

T C 05

1 atm

106.7 atm

661 atm

Ice

Water

dP dT 132.2 atm K



So a pressure increase of (132.2 atm/K) x 5 K = 661 atm would be required to go to from  to . 
Thus this explanation for the success of the skater appears inadequate. 
 
((Note)) 
 
Thermal conductivity: 
 

3.2ice  W/(m K) 

 

56.0water  W/(m K) 

 
The gas constant: 
 

3145.8R  J/(K mol) 
 
Latent heat of fusion: 
 

334fL  kJ/kg 

 
Latent heat of vaporization: 
 

2260vL  kJ/ kg 

 
The density 
 

31000.1 water kg/m3. 

 
310917.0 ice kg/m3. 

 

3100951.0
11 

waterice 
 m3/kg 
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APPENDIX-1 

Derivation of Clausius-Clapeyron equation from the Maxwell’s relation. 

Using the Maxwell’s relation we have 
 

TV V

S
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

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


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



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which leads to the Clausius-Clapeyron equation  
 

VT

L

V

S

dT

dP






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APPENDIX-II 

Maxwell relation 

(ii) Maxwell's relation 
VT T
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V
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
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

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Here we consider the Maxwell's relation 
VT T

P

V

S




















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For 
TV

S











, in the Born diagram, we draw the lines along the vectors SV and VT . The resulting 

vector is VTSVST   (the direction of sun light) 

 



 
 

For 
VT

P











, in the Born diagram, we draw the lines along the vectors PT and TV . The resulting 

vector is TVPTPV   (the direction of water flow). Then we have the positive sign in front of 

VT

P

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 such that 
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