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The heat equation proposed by Fourier in 1822 has been applied to investigating a 

temperature distribution in materials. In 1827, the so-called Brownian motion was found, where 

the self-diffusion of water is visualized by pollen micro particles motion. Nevertheless, the 

Brownian motion had not been recognized as a diffusion problem until the Einstein theory of 

Brownian motion in 1905. Although it was a typical diffusion problem, Fick applied the heat 

equation to the diffusion phenomena in 1855. 

https://en.wikipedia.org/wiki/Diffusion_equation 

 

In 1905, Einstein found a general relation between a coefficient of friction on the particles 

and the diffusion constant related to the position of particles. On the other hand, Langevin 

presented an equation motion with probability, for the particles when they are influenced by 

irregular forces. This is called a Langevin equation. The magnitude of the fluctuating force 

(irregular force) which appears in the Langevin equation, is related to the diffusion co-efficient 

for the position of particles by the Einstein relation (fluctuation-dissipation theorem). 

 

1. Einstein’s analysis: the random walk 

We now consider a simple model of Brownian movement, or the so-called random walk 

model, in one dimension. We consider a particle starting at x = 0 at t = 0 which suffers impacts at 

s steady rate  per second. Each impact causes the particle to jump a (small) distance l, of 

constant magnitude, either in the positive or negative direction of x. We assume that these steps 

of +l or –l are uncorrelated with one another. Let us denote the n-th step by nl  ( lln  ) and 

consequently the total displacement x after N steps, 
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Note that the bracket x  signify an average taken over a large group of many similar 

observations of the displacement x (usually known as an ensemble average). Since 
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Suppose that we have  steps per second. 
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tltlx   22
 (complete randomness) 

 

t  is regarded as typical of any limiting random walk process. 

 

The relative error: 
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2. Brownian movement and irreversibility 

If a particle subject to Newton’s law of motion starts at t = 0, with velocity v0, then after a 

short time its displacement will be given by 
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if we consider an ensemble of such particles obeying Newton’s laws of motion. So we have 
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3. The Diffusion equation and viscosity 

Einstein derived essentially tltlx   22
 by considering the diffusion of 

molecules or particles directly as a random walk problem. 
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D is the diffusion constant  
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4. Diffusion equation 

Einstein showed that the random walk model provided a detailed solution of the familiar 

diffusion equation in one dimension.  

If nJ  is the particle current density and n the particle concentration, the diffusion is described 

by the Fick’s law 
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where D is the diffusivity. The conservation equation 
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leads to the diffusion equation 
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in one dimension. Suppose at t = 0 in an infinite medium 
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where )(x  is the Dirac delta function. We have N particles concentrated at x = 0 when t = 0. 

Solving eq.(1), we have 
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which has the form of Gaussian, 
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Einstein demonstrated that the diffusion and Brownian movement were essentially one and the 

same thing, and that both were fundamentally due to molecular agitation. 

 

5. Gaussian distribution 
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which is the same as the Gaussian distribution 

 

)
2

exp(
2

1
),(

2

2




x
xf   

 

with 

 

Dt22   

 

Note that 



 

0),(  




dxxxfx   

 

Dtdxxfxx 2),(
222  





  

 

6. Langevin’s analysis: random force 

Shortly after Einstein’s work, Labgevin (1908) put forward an analysis of Brownian 

movement, which coulod also take account directly of the inertial forces acting on the system as 

well as viscosity. 

We start with an equation of motion for a particle (mass m) with mass m with a resistive 

force v and a random force )(t .  

 

)(tvvm  ɺ  

 

or 

 

)(txxm   ɺɺɺ  

 

where  is defined by 
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and  is a relaxation time. This leads to 
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We average this result over time. x and  are uncorrelated; 

 

0  xx  

 

We also use the equipartition theorem for the 1 D system 
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Using these results, we get 
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We use the boundary condition (x = 0 at t = 0). We find that  
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where D is the diffusion constant and is defined as 
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Einstein showed that the random walk model provided a detailed solution of the familiar 

diffusion equation in 1D system. The phenomenal solution of the familiar diffusion equation in 

one dimension reads  
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where ),( txf  gives the relative density of particles at x at time t. D is the diffusion constant 



 

7. Correlation 

From the definition of the derivative with respect to t, 
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)(
1

)(
)()(

t
m

tv
m

tvtv









 

 

Multiplying this equation by )0(v  on both sides, we get 
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Taking the time average, 
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Since )(tv  and )(t  are uncorrelated,  
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In the limit of 0 , we have 
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The solution is 
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8. Langevin’s equation: Einstein relation 

We consider the Langevin equation with force F; 
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By taking the average, 

 

Ftv

Fttvtv
dt

d
m





)(

)()()(




 

 

since 0)( t . The solution of this equation is 
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When t , we have the so-called terminal velocity as 
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9. Fluctuation-Dissipation theorem)) 
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10. Property of random force 
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where  is the strength of random force. Here we show that  TkB . 
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The solution of this equation is 
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The fluctuation; 
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since 0)0()( vt . In the limit of t , we have 
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We note the energy partition relation for 1D system; 
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11. Power spectrum 
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The inverse Fourier transform: 
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In physics, we use the Fourier transform such that 
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which are different from the Fourier transform in mathematics in sign in front of . 

 

12. Autocorrelation function 
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The infinite time integral of this product is 
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The autocorrelation function is defined by 
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13. Determination of e for )'(2)'()( tttt    

We solve the equation given by 
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using the Fourier transform. 
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According to the Wiener-Khinchin theorem, we get 
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14. The correlation function 

The Fourier transform )(x  of the position )(tx  
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From the inverse Fourier transform, we also get 
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First we consider the integral, 
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This integral is divergent because of the extra factor of 2  in the denominator. So we correctly 

conclude that 
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Since  TkB , we have 
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We use the residue theorem for the second term. For t>0 we use the lower half plane of the 

complex plane (a single pole is at i ) and for t<0, we use the upper half plane (a single pole is 

at i ).  
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15. Nyquist’s theorem 

by K. Huang 

Introduction to Statistical Mechanics 

 

((Intuitive argument)) 

The resistor at temperature T exchanges energy with a heat reservoir, and the average heat 

dissipation in the frequency range   is 

 

 TkRI B
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Using Ohm’s law IRV  , we obtain 

 

 TRkV B
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((Transmission line)) 

We derive this law by considering a transmission line (distributed circuit) of length L and 

impedance R. We terminate the transmission line at both ends with resistance R, so that 

travelling waves along the line are totally absorbed at the ends with no reflection. 

 

 
 

Fig. Transmission line with no reflection. The characteristic impedance (R) is equal to the 

loads resistance (R), where no reflection occurs. Note that the distributed circuit is very 

different from the lumped circuit. The distributed circuit is very significant for high 

frequency region. 

 

We consider the standing wave in the transmission line with a length L. The wavelength of the 

standing wave is 
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where n is an integer (n = 1, 2, 3,…). We assume that the dispersion relation is given by 
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leading to the relation 
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where c is the velocity, k is the wave vector, and   is the wave length. 

At a finite temperature T all higher modes are excited with frequencies n . What is the 

average energy of the mode with the frequency  ? To this end, we use the partition function 

which is defined by 
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where  2 . The average energy of the mode with the frequency   is 
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For TkBℏ , we can use the approximation 
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The number of modes in the band width   is 
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The energy can be regarded as residing in two travelling waves in opposite directions, and the 

time it takes to traverse the line is 
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Thus the energy absorbed per second by each resistor is 
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and the power delivered to each resistor is 
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As indicated in the distributed-circuit diagram, the voltage across a resistor is 
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Therefore we have  
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Hence 
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This is known as the Nyquist theorem, and predicts a universal relation between 2V  and R, true 

for all materials. The Nyquist relation was experimentally confirmed for the first time by 

Johnson (1928). 

 

 
 

Fig. Nyquist noise: mean-square voltage fluctuation across the open ends of a resistor, as a 

function of resistance. The Nyquist theorem predicts the straight line with a universal 



slope. K. Huang, Introduction to Statistical Physics (CRC Press, 2010). p.136. The 

original data is from a paper of J.B. Johnson, Phys. Rev. 32, 97 (1928). Fig.4 (p.102). 

 

16. Noise 

Here we consider a noise in the RC circuit (lumped circuit). It is well known that a 

fluctuation voltage across the resistance R is generated due to the thermal noise due to 

conduction electrons in the resistance. The thermal noise arises from thermal fluctuation in 

thermal equilibrium. 

 

 
 

Fig. RC circuit. )(tV  is a voltage source arising from thermal noises of conduction electrons 

inside the resistance R.  
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We have a differential equation, 
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Which corresponds to the equation of motion, 
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The table of the correspondence is shown below, 
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Using the energy partition 
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Then the power spectrum is given by 
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where the factor 2 is necessary when only the positive frequency ( 0 ) is taken into account. 
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APPENDIX 

Solving the diffusion equation  

(Lecture Note on Mathematical Physics by M. Suzuki, 2010) 

 
1. Thermal conductivity 

Fourier's law 
 

TKu J , 



 
describes the energy flux density in terms of the thermal conductivity K and the temperature 

gradient. This forms assumes that there is a net transport of energy, but not of particles. The 
equation of continuity for the energy density is 
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where C is the heat capacity per unit volume.  We combine these two equations to obtain the heat 

conduction 
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where  D = K/C is called the thermal diffusivity. This equation describes the time-dependent 
diffusion for the temperature. 

 
.2. Green's function  

We want to solve the heat equation in one dimension, 
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where ),( txQ  is a heat source. First we start to find the Green's function which is defined by 
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Using the Fourier transform, we have 
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The Fourier transform of the above equation: 
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Then the inverse Fourier transform is obtained as 
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We now calculate the integral 
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(i) t>0 

For t>0, we use the contour C1 in lower half plane (the complex plane). The contour integral 

along the path 1 (radius R = ∞) is zero according to the Jordan's lemma. Note that the contour 

C1 is the clock-wise, and that there is a simple pole at 
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inside the contour C1. Then we have 
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for t>0. Since 
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(ii) t<0 

For t<0, we use the contour C2 in the upper half plane (the complex plane). The contour integral 

along the path 2 (radius R = ∞) is zero according to the Jordan's lemma. Note that the contour 

C2 is the clock-wise, and that there is no pole. 
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The Green's function is obtained as 
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((Mathematica)) 
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3. General solution 
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where Q(x, t) is a heat source. Green's function satisfies 
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The solution of the differential equation for the heat conduction is 
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((Example)) Dirac comb 

We assume that 
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We further assume that f(t) is described by a Dirac comb given by 
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Fig. Dirac comb with the heat pulses at x = 0 applied periodically (T0 is a period time). 

 
 

Then we have 
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Fig. Simulation. Plot of T(x, t) vs t with x as a parameter (x = 1 - 10). D = 1. T0 = 5. 
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4. Initial condition 

We consider the solution of the differential equation given by 
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with the initial condition given by 
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which is an initial temperature distribution at t = 0. We assume that the solution is given by 
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Since there is no heat source, this solution satisfies 
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The Green's function satisfies 
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The form of G(x, t) is given by 
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The solutions of u(x, t) and T(x, t) are obtained as 
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((Example)) Dirac delta function 
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Fig. t dependence of T(x, t) with each x. D = 1.  
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Fig. T(x,t) has a maximum (= 
xe2

1
) at 

D

x
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  as a function of t where x is fixed as a 

parameter. D = 1. This figure is the same as the above figure. 
 

 
The derivative of T(x, t) with respect to t is obtained as 
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which implies that T(x, t) has a maximum (= 
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The pulse spreads out with increasing time. The mean square value of x is given by 
 

 

Dt
dxtxT

dxtxTx
x 2

),(

),(
2

2 



 

 
The root mean square value is 
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5. Brownian motion 

The width of the distribution increases as t , which is a general characteristic of diffusion 

and random walk problem in one dimension. The connection with Brownian motion or the 

random walk problem follows if we let t0 be the duration of each step of a random walk. 
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where N is the number of steps. It follows that 
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So that the rms displacement is proportional to the square of the number of steps. This is the 

result of the Brownian motion, the random motion of suspensions of small particles in liquids 
(Kittel and Kroemer). 



 
6. Experiment 

In the sophomore laboratory (Physics 227, Binghamton University) we have an experiment 
of "Thermal Wave." The purpose of this experiment is to measure the thermal diffusivity (D) of a 

brass rod. 
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Fig.1 Diagram of apparatus (from the report by Corrine Blum (Fall, 2009, Sophomore 

Laboratory). 
 

Figure 1 shows a diagram of the apparatus used. There are three temperature sensors located 

on the brass rod. The separation distance between adjacent sensors is x (= 10 cm). A heat 

source at the one of the edge, is applied for the time T on and the same time T off, in a square 
wave for one hour, where T1 = 5 and 10 minutes (two trials). The temperature data from each 

sensor are recorded as a function of time using the computer. Figures 2 and 3 show the 
temperature data measured by the three sensors, as a function of time t, where T = 5 minutes for 

the trial 1 (Fig.2) and the trial (Fig.3). As shown in Figs.2 and 3, the heat propagates from the 

sensor 1 to the sensor 2 and from the sensor 2 to the sensor 3 in the same finite time t. The 
diffusion diffusivity D can be estimates as 
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The thermal diffusivity is found to be 3.63 x 10-5 m2/s for the trial 1 and 3.33 x 10-5 m2/s for the 

trial 2. Note that the theoretical value of D for the brass rod is 3.376 x 10-5 m2/s. 
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Fig.2 Temperatures measured by three sensors as a function of time (trial 1). T = 5 minutes. 
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Fig.3 Temperatures measured by three sensors as a function of time (trial 2). T = 10 minutes. 
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