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Joule-Thomson effect: Intermolecular attractive interactions cause the condensation of all gases. 

At temperatures slightly above the condensation temperature the interactions are strong enough 

that work against them during expansion causes significant cooling of the gas. If the cooling is 

sufficient, part of the gas will condensate.  

(C. Kittel) 

 

1. Cooling by external work in an expansion engine 

The entropy of an ideal monatomic gas depends on the volume and the temperature. 
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So the entropy remains constant if 
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or 
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In an expansion at constant entropy from V1 to V2 for an ideal monatomic gas 
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We use the ideal gas law 
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Then we get the relation 
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((Example)) 

 

P1 = 32 atm. T1 = 300 K. When P2 = 1 atm, we have T2 = 75 K. 

 

2. Gas liquefaction by the Joule-Thomson effect 

 

 
 



 
 

Fig. The thermodynamic basis of Joule–Thomson expansion. The pistons represent the 

upstream and downstream gases, which maintain constant pressures either side of the 

throttle. The transition from the top diagram to the bottom diagram, which represents the 

passage of a given amount of gas through the throttle, occurs without change of enthalpy. 

(Atkins, Physical Chemistry) 

 

 

Intermolecular attraction interactions cause the condensation of all gases. At temperatures 

slightly above the condensation temperature the interactions are strong enough that work against 

them during expansion causes significant cooling of the gas. If the cooling is sufficient, part of 

the gas will condense. This is called the Joule-Thomson liquefaction. The pressure P1 and P2 

remain constant through the process. Such a process may be diagrammatically represented as a 

passage of the gas through a porous partition. The constancy of pressure on either side of the 

partition is maintained by pistons moving inward and outward in an appropriate manner. If the 

hole in the partition are sufficiently small, the macroscopic flow velocity of the gas may be taken 

as zero. The gas is thermally isolated from the external medium. 

This process is irreversible because of the presence of the partition with very small holes, 

which creates a large amount of friction and destroys the velocity of the gas. 

 

The difference of energy between final and initial state; 
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Then the enthalpy H remains constant. In other words, we have 21 HH   in the Joule-Thomson 

effect. For a monoatomic gas, 
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So that 21 TT   in the expansion. There is zero cooling for an ideal gas. Note that for an ideal gas 

the enthalpy is given by 
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Since the enthalpy dends only on T, the temperature remains unchanged.  

The change in T caused by a small change of pressure in a Joule-Thomson process is given 

by 
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 (Maxwell) 

 

Then we have 
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where  is the co-efficient of thermal expansion and defined by 
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The change in temperature for a gas following the Joule-Thomson expansion from pressure P1 to 

pressure P2 is given by 
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Fig. The inversion curve of the van der Waals gas is shown as the heavy dashed line. The 

isenthalps (lines of constant enthalpy) are shown as thin solid lines. When the gradients 

of the isenthalps on this diagram are positive, then cooling can be obtained when pressure 

is reduced at constant enthalpy (i.e. in a Joule–Kelvin expansion). Also shown (as a solid 

line near the bottom left-hand corner of the graph which terminates at the dot) is the line 

of coexistence of liquid and gas ending in the critical point (P = Pc, T = Tc, shown by the 

dot). (Blundell-Blundell) 

 

3. The inversion temperature (the number density) 

 

The van der Waals equation 
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We introduce a new variable (the number density) 
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Then the van der Waals equation can be rewritten as 
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Taking the derivative with respect to T at constant P, we get 
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 (the co-efficient of thermal expansion) is obtained as 
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The inversion temperature is given by 
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The van der Waals equation: 
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From Eq.(1), pr can be obtained as 
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(a) At tr = 3, rp 9 (pr has a local maximum at tr = 3 in the pr vs tr) 

(b) pr ie equal to zero at tr = 3/4 and 27/4. 

 



 
 

Fig. The inversion curve of the van der Waals gas (red line). The dot denotes the critical point. 

 

((Example-2))  Ideal gas: TNkPV B  
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((Example-2))  van der Waals gas 

The van der Waals equation is given by 
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The enthalpy H is given by 
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where a and b are positive. 

 

((Note)) 

We use the two equations 
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Noting that 
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we have the expression for H as 
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The results are given to the first order in the van der Waals correction terms a and b. 
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where Tinv is defined as 
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All gases have a Tinv, below which an expansion cools, above which it heats the gas. 

 

((Physical meaning)) 
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(a) For invTT  , H at fixed T increases as the volume increases; here in expansion the work 

done against the attractive interaction between molecules is dominant. In a process at 



constant H, this increase is compensated by a decrease of TNkB
2

5
 term by cooling the 

gas. 

(b) For invTT  , H at fixed T decreases because the work done by the short range repulsive 

interactions is dominant. At the higher temperatures the molecules penetrate farther into 

the repulsive region. 

 

Tinv = 621 K (N2), 205 K (N2), 193 K (H2), 51 K (He). 

 

The Joule-Thomson effect is essentially due to the interaction between molecules of gases. When 

the gas is expanded, the distance between molecules in gas becomes longer, leading to the 

increase of potential energy. In other words, the energy work done (W) on the gas becomes 

increasing on expansion. Because of the energy conservation,  
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the thermal energy Q decreases, leading to the lowering of temperature. For the ideal gas 

without any attractive interaction between molecules in gas the Joule-Thomson effect does not 

occur. 

 

 

______________________________________________________________________________ 

ContourPlot of the enthalpy constant 
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((ContourPlot)) 

 

We make a plot of  
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Fig. The isenhalps (lines of constant enthalpy). 1rt . 

 



 
 

((Note)) 

 



 
 

Fig. The inversion temperatures for nitrogen. 

 

5. Linde liquefier 

The arrangement with the heat exchanger and expansion valve connected in series leads to a 

process that takes place at constant enthalpy. It is often referred to as a Linde liquefier. If we 

denote the enthalpies of the gas streaming in, the liquid and the gas streaming back as Hin, H_ 

and Hback, respectively, we can write the relation 
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where λ represents the fraction of gas that has been liquefied. Since the three enthalpies that enter 

here are well known from various experiments, one can easily calculate λ using the equation 
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The magnitude of λ depends on the pressure difference as well as on the starting temperature of 

the expansion. Since, for a decent liquefaction λ > 0.1 is desirable, one usually needs to start 

with temperatures below Tinv/3. Because of this, it is sensible to use an expansion engine for 

precooling in the process of liquefaction of many gases. The combination of a Linde liquefier 

and an expansion engine is known as a Claude cycle (Enss and Hunklinger). 

 



 
 

Fig. Schematic illustration of the setup of a gas liquefier with Joule–Thomson expansion and 

counterflow heat exchanger (C. Enss and S. Hunklinger). 
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