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1. Born diagram 

(N. Hashitsume, Thermodynamics, Iwanami) 

In thermodynamics, we often use the following four thermodynamic potentials, E, F, G, and 

H. The diagram (called the Born's diagram) was introduced by Born (Max). In order to memorize 

this diagram, we give interpretation for the letters. The sun (S; entropy) pours lights on the trees 

(T; temperature). The water falls from the peak (P; pressure) of mountain into the valley (V; 

volume). We draw a square with four vertices noted by S, T, P, and V. . The light propagates 

from the point S to the point T. The water flows from the point P to the point V. These two 

arrows are denoted by the vectors given by ST  (the direction of light flow) and PV  (the 

direction of water flow). These vectors are perpendicular to each other. The four sides of the 

square are denoted by E, F, G, and H in a clockwise direction. Note that the side H (H: heaven) is 

between two vertices S (sun) and P (peak). 
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Fig. Born diagram. S: entropy. T: temperatute. P: pressure. V: volume. H: heaven (between S 

and P). E→F→G→H (clockwise). The water flow from P (peak) to V (valley). The sun 

light from S (sun) to T (tree). Note that U E . F E ST  . G F PV  . H E PV  . 

 

(i) The natural variables of the internal energy E is S and V. 

 

PdVTdSdE   

 

The sign before T is determined as plus from the direction of the vector ST  ( ST : the direction of 

light). The sign before P is determined as minus from the direction of the vector PVVP   

(PV ; the direction of water flow). 

 

(ii) The natural variables of the Helmholtz energy F is V and T. 

 

PdVSdTdF   

 

The sign before S is determined as minus from the direction of the vector STTS   ( ST : the 

direction of light). The sign before P is determined as minus from the direction of the vector 

PVVP   (PV ; the direction of water flow). 

 

(iii) The natural variables of the Gibbs energy G is P and T. 

 

SdTVdPdG   

 

The sign before S is determined as minus from the direction of the vector STTS   ( ST : the 

direction of light). The sign before V is determined as plus from the direction of the vector  PV  

(PV ; the direction of water flow). 

 

(iv) The natural variables of the enthalpy H is S and P. 

 

VdPTdSdH  . 

 

The sign before T is determined as minus from the direction of the vector ST  ( ST : the direction 

of light). The sign before V is determined as plus from the direction of the vector  PV  (PV ; the 

direction of water flow). 

 

Maxwell's relation 
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((Note)) 
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(ii) The enthalpy ),( PSHH  is defined as 
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For an infinitesimal reversible process 
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The Maxwell’s relation: 
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((Note)) 
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(iii) The Helmholtz free energy ),( VTFF   is defined as 

 

STEF   or STFE   

 

For an infinitesimal reversible process 
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The Maxwell’s relation: 
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((Note)) 
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(iv) The Gibbs free energy ),( PTGG   is defined as 
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Then we have 
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((Note)) 
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(1) The Maxwell’s equation: 
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Here we consider the Maxwell's relation 
VS S

P

V

T

























 

 

For 
VS

P












, in the Born diagram, we draw the lines along the vectors PS and SV . The resulting 

vector is SVPSPV   (the direction of water flow) 
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(ii) Maxwell's relation 
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2. Alternative derivation of Maxwell’s relations (Blundell and Blundell) 

The following derivation is more elegant, but requires a knowledge of Jacobians: Consider a 

cyclic process which can be described in both the T-S and P-V planes. The internal energy U is a 

state function and therefore does not change in a cycle, so 
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This is equivalent to 
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So that the work done (the area enclosed by the cycle in the P-V plane) is equal to the heat 

absorbed (the area enclosed by the cycle in the T-S plane). However, one can also write 

 

( , )

( , )

P V
dPdV dTdS dTdS

T S


 

    

 

or 

T V

P

F

S



 

( , )

( , )

T S
dTdS dPdV dPdV

P V


 

    

 

Where 
( , )

( , )

T S

P V




 is the Jacobian of the transformation from the T-S plane to the P-V plane, and so 

this implies that 

 

( , )
1

( , )

T S

P V





. 

 

Similarly we have 

 

( , ) 1
1

( , )( , )

( , )

P V

T ST S

P V


 



  

 

Note that  

 

( , )
1

( , )

T S

P V





 

 

is correct, but 
( , )

1
( , )

S T

P V


 


. So we need to use the relation ( , ) ( , )S T P V    

 

This equation is sufficient to generate all four Maxwell relations via 
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3. Problem and solution (I) 

 

C. Kittel and H. Kromer, Thermal Physics (W.H. Freeman, 1980). 

 

Problem 9-1 (a part) 

Thermal expansion near absolute zero 

(a) Prove a Maxwell relation 
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(b) Show that the volume coefficient of thermal expansion 
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approaches zero as 0T . 

 

((Solution)) 
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Maxwell relation 
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(b) 

The volume coefficient of thermal expansion 
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