Maxwell's relation: Born Diagram

Masatsugu Sei Suzuki
Department of Physics, SUNY at Binghamton
(Date: August 29, 2016)

1. Born diagram

(N. Hashitsume, Thermodynamics, Iwanami)

In thermodynamics, we often use the following four thermodynamic potentials, E, F, G, and H. The diagram (called the Born's diagram) was introduced by Born (Max). In order to memorize this diagram, we give interpretation for the letters. The sun (S; entropy) pours lights on the trees (T; temperature). The water falls from the peak (P ; pressure) of mountain into the valley (V ; volume). We draw a square with four vertices noted by $\mathrm{S}, \mathrm{T}, \mathrm{P}$, and V . . The light propagates from the point S to the point T . The water flows from the point P to the point V. These two arrows are denoted by the vectors given by $\overrightarrow{S T}$ (the direction of light flow) and $\overrightarrow{P V}$ (the direction of water flow). These vectors are perpendicular to each other. The four sides of the square are denoted by $\mathrm{E}, \mathrm{F}, \mathrm{G}$, and H in a clockwise direction. Note that the side H (H : heaven) is between two vertices S (sun) and P (peak).

Fig. Born diagram. S : entropy. T : temperatute. P : pressure. V : volume. H : heaven (between S and P). $E \rightarrow F \rightarrow G \rightarrow H$ (clockwise). The water flow from P (peak) to V (valley). The sun light from S (sun) to T (tree). Note that $U=E . F=E-S T . G=F+P V . H=E+P V$.
(i) The natural variables of the internal energy E is S and V.

$$
d E=T d S-P d V
$$

The sign before T is determined as plus from the direction of the vector $\overrightarrow{S T}(\overrightarrow{S T}$: the direction of light). The sign before P is determined as minus from the direction of the vector $\overrightarrow{V P}=-\overrightarrow{P V}$ ($\overrightarrow{P V}$; the direction of water flow).
(ii) The natural variables of the Helmholtz energy F is V and T.

$$
d F=-S d T-P d V
$$

The sign before S is determined as minus from the direction of the vector $\overrightarrow{T S}=-\overrightarrow{S T}(\overrightarrow{S T}$: the direction of light). The sign before P is determined as minus from the direction of the vector $\overrightarrow{V P}=-\overrightarrow{P V}(\overrightarrow{P V}$; the direction of water flow $)$.
(iii) The natural variables of the Gibbs energy G is P and T.

$$
d G=V d P-S d T
$$

The sign before S is determined as minus from the direction of the vector $\overrightarrow{T S}=-\overrightarrow{S T}(\overrightarrow{S T}$: the direction of light). The sign before V is determined as plus from the direction of the vector $\overrightarrow{P V}$ ($\overrightarrow{P V}$; the direction of water flow).
(iv) The natural variables of the enthalpy H is S and P.

$$
d H=T d S+V d P
$$

The sign before T is determined as minus from the direction of the vector $\overrightarrow{S T}$ ($\overrightarrow{S T}$: the direction of light). The sign before V is determined as plus from the direction of the vector $\overrightarrow{P V}(\overrightarrow{P V}$; the direction of water flow).

Maxwell's relation

(i) The internal energy $E=E(S, V)$

For an infinitesimal reversible process

$$
d E=T d S-P d V
$$

showing that

$$
T=\left(\frac{\partial E}{\partial S}\right)_{V} \quad \text { and } \quad P=-\left(\frac{\partial E}{\partial V}\right)_{S}
$$

The Maxwell's relation;

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

((Note))

$$
\begin{aligned}
\left(\frac{\partial T}{\partial V}\right)_{S} & =\left(\frac{\partial}{\partial V}\right)_{S}\left(\frac{\partial E}{\partial S}\right)_{V} \\
& =\frac{\partial^{2} E}{\partial V \partial S} \\
& =\frac{\partial^{2} E}{\partial S \partial V} \\
& =\left(\frac{\partial}{\partial S}\right)_{V}\left(\frac{\partial E}{\partial V}\right)_{S} \\
& =-\left(\frac{\partial P}{\partial S}\right)_{V}
\end{aligned}
$$

(ii) The enthalpy $H=H(S, P)$ is defined as

$$
H=E+P V
$$

For an infinitesimal reversible process

$$
\begin{aligned}
d H & =d E+P d V+V d P \\
& =T d S-P d V+P d V+V d P \\
& =T d S+V d P
\end{aligned}
$$

showing that

$$
T=\left(\frac{\partial H}{\partial S}\right)_{P} \quad \text { and } \quad V=\left(\frac{\partial H}{\partial P}\right)_{S}
$$

The Maxwell's relation:

$$
\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}
$$

((Note))

$$
\begin{aligned}
\left(\frac{\partial T}{\partial P}\right)_{S} & =\left(\frac{\partial}{\partial P}\right)_{S}\left(\frac{\partial H}{\partial S}\right)_{P} \\
& =\frac{\partial^{2} H}{\partial P \partial S} \\
& =\frac{\partial^{2} H}{\partial S \partial P} \\
& =\left(\frac{\partial}{\partial S}\right)_{P}\left(\frac{\partial H}{\partial P}\right)_{S} \\
& =\left(\frac{\partial V}{\partial S}\right)_{P}
\end{aligned}
$$

(iii) The Helmholtz free energy $F=F(T, V)$ is defined as

$$
F=E-S T \quad \text { or } \quad E=F+S T
$$

For an infinitesimal reversible process

$$
\begin{aligned}
d F & =d E-S d T-T d S \\
& =T d S-P d V-S d T-T d S \\
& =-P d V-S d T
\end{aligned}
$$

showing that

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T} \quad \text { and } \quad S=-\left(\frac{\partial F}{\partial T}\right)_{V}
$$

The Maxwell's relation:

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
$$

((Note))

$$
\begin{aligned}
\left(\frac{\partial S}{\partial V}\right)_{T} & =-\left(\frac{\partial}{\partial V}\right)_{T}\left(\frac{\partial F}{\partial T}\right)_{V} \\
& =-\frac{\partial^{2} F}{\partial V \partial T} \\
& =-\frac{\partial^{2} F}{\partial T \partial V} \\
& =-\left(\frac{\partial}{\partial T}\right)_{V}\left(\frac{\partial F}{\partial V}\right)_{T} \\
& =\left(\frac{\partial P}{\partial T}\right)_{V}
\end{aligned}
$$

(iv) The Gibbs free energy $G=G(T, P)$ is defined as

$$
G=H-S T=(E+P V)-S T=F+P V
$$

Then we have

$$
d G=V d P-S d T
$$

showing that

$$
S=-\left(\frac{\partial G}{\partial T}\right)_{P} \quad \text { and } \quad V=\left(\frac{\partial G}{\partial P}\right)_{T}
$$

((Note))

$$
\begin{aligned}
\left(\frac{\partial S}{\partial V}\right)_{T} & =-\left(\frac{\partial}{\partial V}\right)_{T}\left(\frac{\partial F}{\partial T}\right)_{V} \\
& =-\frac{\partial^{2} F}{\partial V \partial T} \\
& =-\frac{\partial^{2} F}{\partial T \partial V} \\
& =-\left(\frac{\partial}{\partial T}\right)_{V}\left(\frac{\partial F}{\partial V}\right)_{T} \\
& =\left(\frac{\partial P}{\partial T}\right)_{V}
\end{aligned}
$$

(1) The Maxwell's equation:

$$
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Here we consider the Maxwell's relation $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$
For $\left(\frac{\partial P}{\partial S}\right)_{V}$, in the Born diagram, we draw the lines along the vectors $\overrightarrow{P S}$ and $\overrightarrow{S V}$. The resulting vector is $\overrightarrow{P V}=\overrightarrow{P S}+\overrightarrow{S V}$ (the direction of water flow)

For $\left(\frac{\partial T}{\partial V}\right)_{S}$, in the Born diagram, we draw the lines along the vectors $\overrightarrow{T V}$ and $\overrightarrow{V S}$. The resulting vector is $\overrightarrow{T S}=\overrightarrow{T V}+\overrightarrow{V S}=-\overrightarrow{S T}$ (anti-parallel to the propagating direction of light). Then we have the negative sign in front of $\left(\frac{\partial P}{\partial S}\right)_{V}$ such that

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
$$

(ii) Maxwell's relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$

Here we consider the Maxwell's relation $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$

For $\left(\frac{\partial S}{\partial V}\right)_{T}$, in the Born diagram, we draw the lines along the vectors $\overrightarrow{S V}$ and $\overrightarrow{V T}$. The resulting vector is $\overrightarrow{S T}=\overrightarrow{S V}+\overrightarrow{V T}$ (the direction of sun light)

T F V

For $\left(\frac{\partial P}{\partial T}\right)_{V}$, in the Born diagram, we draw the lines along the vectors $\overrightarrow{P T}$ and $\overrightarrow{T V}$. The resulting vector is $\overrightarrow{P V}=\overrightarrow{P T}+\overrightarrow{T V}$ (the direction of water flow). Then we have the positive sign in front of $\left(\frac{\partial P}{\partial T}\right)_{V}$ such that

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}
$$

2. Alternative derivation of Maxwell's relations (Blundell and Blundell)

The following derivation is more elegant, but requires a knowledge of Jacobians: Consider a cyclic process which can be described in both the $T-S$ and $P-V$ planes. The internal energy U is a state function and therefore does not change in a cycle, so

$$
\oint d U=\oint T d S-\oint P d V=0 \quad \text { or } \quad \oint T d S=\oint P d V
$$

This is equivalent to

$$
\iint d T d S=\iint d P d V
$$

So that the work done (the area enclosed by the cycle in the $P-V$ plane) is equal to the heat absorbed (the area enclosed by the cycle in the $T-S$ plane). However, one can also write

$$
\iint d P d V=\iint \frac{\partial(P, V)}{\partial(T, S)} d T d S=\iint d T d S
$$

or

$$
\iint d T d S=\iint \frac{\partial(T, S)}{\partial(P, V)} d P d V=\iint d P d V
$$

Where $\frac{\partial(T, S)}{\partial(P, V)}$ is the Jacobian of the transformation from the $T-S$ plane to the P-V plane, and so this implies that

$$
\frac{\partial(T, S)}{\partial(P, V)}=1
$$

Similarly we have

$$
\frac{\partial(P, V)}{\partial(T, S)}=\frac{1}{\frac{\partial(T, S)}{\partial(P, V)}}=1
$$

Note that

$$
\frac{\partial(T, S)}{\partial(P, V)}=1
$$

is correct, but $\frac{\partial(S, T)}{\partial(P, V)}=-1$. So we need to use the relation $\partial(S, T)=-\partial(P, V)$

This equation is sufficient to generate all four Maxwell relations via

$$
\frac{\partial(T, S)}{\partial(x, y)}=\frac{\partial(P, V)}{\partial(x, y)}
$$

Where (x, y) are taken as
(i) (T, P),
(ii) $\quad(T, V)$
(iii) (P, S),
(iv) $\quad(S, V)$

And using the identities such as

$$
\frac{\partial(P, T)}{\partial(V, T)}=\left(\frac{\partial P}{\partial V}\right)_{T}
$$

We use the relation

$$
\frac{\partial(T, S)}{\partial(x, y)}=\frac{\partial(P, V)}{\partial(x, y)}
$$

(a) $\quad x=P, y=T$

$$
\frac{\partial(T, S)}{\partial(P, T)}=\frac{\partial(P, V)}{\partial(P, T)}
$$

or $\quad\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}$
(b) $\quad x=T, y=V$
$\frac{\partial(T, S)}{\partial(T, V)}=\frac{\partial(P, V)}{\partial(T, V)}$
or $\quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
(c) $x=V, y=S$
$\frac{\partial(T, S)}{\partial(V, S)}=\frac{\partial(P, V)}{\partial(V, S)}$
or $\quad\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$
(d) $x=S, y=P$

$$
\frac{\partial(T, S)}{\partial(S, P)}=\frac{\partial(P, V)}{\partial(S, P)}
$$

$$
\text { or }\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}
$$

3. Problem and solution (I)

C. Kittel and H. Kromer, Thermal Physics (W.H. Freeman, 1980).

Problem 9-1 (a part)
Thermal expansion near absolute zero
(a) Prove a Maxwell relation

$$
\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}
$$

(b) Show that the volume coefficient of thermal expansion

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

approaches zero as $T \rightarrow 0$.
((Solution))

Then we have

$$
d G=V d P-S d T
$$

showing that

$$
S=-\left(\frac{\partial G}{\partial T}\right)_{P} \quad \text { and } \quad V=\left(\frac{\partial G}{\partial P}\right)_{T}
$$

Maxwell relation

$$
\begin{aligned}
\left(\frac{\partial V}{\partial T}\right)_{P} & =\left(\frac{\partial}{\partial T}\right)_{P}\left(\frac{\partial G}{\partial P}\right)_{T} \\
& =\frac{\partial^{2} G}{\partial T \partial P} \\
& =\frac{\partial^{2} G}{\partial P \partial T} \\
& =\left(\frac{\partial}{\partial P}\right)_{T}\left(\frac{\partial G}{\partial T}\right)_{P} \\
& =-\left(\frac{\partial S}{\partial P}\right)_{T}
\end{aligned}
$$

(b)

The volume coefficient of thermal expansion

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=-\frac{1}{V}\left(\frac{\partial S}{\partial P}\right)_{T}
$$

$\left(\frac{\partial S}{\partial P}\right)_{T}$ vanishes for $T=0$. since $S=0$ for $T=0 \mathrm{~K}$ and any pressure. Then we have

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \rightarrow 0
$$

