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Here we discuss the Rűchhardt’s method of measuring the ratio g., and Rinkel’s modification. 

 

Blundell and Blundell 

Thermal Physics 

Problem 12-6 

 

 



 



 
 

(a) Rűchhardt’s method 

 

Newton’s second law 
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where the positive x direction is downward 
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In the adiabatic process, 
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Thus we get an equation of the simple harmonics, 
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The angular frequency of the simple harmonic is 
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The period T is given by 
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(b) Rinkel’s modification 

 

Newton’s second law 
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where the positive x direction is downward and 
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where we put 0PP  . Then we get the differential equation 
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In equilibrium; 
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We put 0xxy   
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The solution is given by 
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From the initial condition that at t = 0, 0x , and 0xɺ . Then we have 0B  and 0xA   (the 

amplitude) 
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The system undergoes a motion of simple harmonics. The total amplitude of oscillation is 02xL  . 

So we have 
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or 
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((Note)) Approach from the Energy conservation 

 

We now return to the original equation, 
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Multiplying xɺ  on both sides, 
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This leads to the energy conservation law, 
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Since 0xɺ  and 0x , 0xɺ  and 1xx  , we have 
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leading to  
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leading to the relation 
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where m = mass (kg), g = gravitational acceleration (m/s2), V = volume of tube (m3), 0P = 1 atm 

(Pa), A = cross sectional area (m2), and L = distance where mass has initially dropped (m). 

 

 

((Blundell)) 

I think that the second part of the solution is wrong. 

 


