Experimental determination of g: Rűchhardt's method and Rinkel's modification

Masatsugu Sei Suzuki
Department of Physics
(Date: September 07, 2017)

Here we discuss the Rüchhardt's method of measuring the ratio g., and Rinkel's modification.

Blundell and Blundell
Thermal Physics
Problem 12-6
(12.6) In Rüchhardt's method of measuring γ, illustrated in Fig. 12.2, a ball of mass m is placed snugly inside a tube (cross-sectional area A) connected to a container of gas (volume V). The pressure p of the gas inside the container is slightly greater than atmospheric pressure p_{0} because of the downward force of the ball, so that

$$
\begin{equation*}
p=p_{0}+\frac{m g}{A} \tag{12.38}
\end{equation*}
$$

Show that if the ball is given a slight downwards displacement, it will undergo simple harmonic motion with period τ given by

$$
\begin{equation*}
\tau=2 \pi \sqrt{\frac{m V}{\gamma p A^{2}}} \tag{12.39}
\end{equation*}
$$

Fig. 12.2 Rüchhardt's apparatus for measuring γ. A ball of mass m oscillates up and down inside a tube.
[You may neglect friction. As the oscillations are fairly rapid, the changes in p and V which occur can be treated as occurring adiabatically.]
In Rinkel's 1929 modification of this experiment, the ball is held in position in the neck where the gas pressure p in the container is exactly equal to air pressure, and then let drop, the distance L that it falls before it starts to go up again is measured. Show that this distance is given by

$$
\begin{equation*}
m g L=\frac{\gamma P A^{2} L^{2}}{2 V} \tag{12.40}
\end{equation*}
$$

(a) Rüchhardt's method

Newton's second law

$$
m \ddot{x}=m g+A\left[P_{0}-\left(P_{1}+d P\right)\right]=-A d P
$$

where the positive x direction is downward

$$
P_{1}=P_{0}+\frac{m g}{A}
$$

In the adiabatic process,

$$
\ln P+\gamma \ln V=\text { const }
$$

or

$$
\frac{d P}{P}+\gamma \frac{d V}{V}=0
$$

leading to

$$
d P=-\gamma \frac{P_{1}}{V} d V=-\gamma \frac{P_{1}}{V}(-A x)=\frac{\gamma P_{1} A}{V} x
$$

Thus we get an equation of the simple harmonics,

$$
m \ddot{x}=-\frac{\gamma P_{1} A^{2}}{V} x=-k_{1} x
$$

where

$$
k_{1}=\frac{\gamma P_{1} A^{2}}{V}
$$

The angular frequency of the simple harmonic is

$$
\omega_{1}=\sqrt{\frac{k_{1}}{m}}=\sqrt{\frac{\gamma P_{1} A^{2}}{m V}}
$$

The period T is given by

$$
T=\frac{2 \pi}{\omega_{1}}=2 \pi \sqrt{\frac{m V}{\gamma P_{1} A^{2}}}
$$

(b) Rinkel's modification

Newton's second law

$$
m \ddot{x}=m g+A\left[P_{0}-\left(P_{0}+d P\right)\right]=m g-A d P
$$

where the positive x direction is downward and

$$
d P=-\gamma \frac{P_{0}}{V} d V=-\gamma \frac{P_{0}}{V}(-A x)=\frac{\gamma P_{0} A}{V} x
$$

where we put $P=P_{0}$. Then we get the differential equation

$$
m \ddot{x}=m g-\frac{\gamma P_{0} A^{2}}{V} x=m g-k_{0} x
$$

In equilibrium;

$$
\begin{equation*}
m g=k_{0} x_{0} \tag{1}
\end{equation*}
$$

where

$$
k_{0}=\frac{\gamma P_{0} A^{2}}{V}
$$

We put $y=x-x_{0}$

$$
m \ddot{y}=-k_{0} y
$$

with

$$
\omega_{0}^{2}=\frac{k_{0}}{m}=\frac{\gamma P_{0} A^{2}}{m V}
$$

The solution is given by

$$
y=x-x_{0}=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right),
$$

or

$$
\begin{aligned}
& x=x_{0}+A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \dot{y}=\dot{x}=-\omega A \sin \left(\omega_{0} t\right)+B \omega_{0} \cos \left(\omega_{0} t\right)
\end{aligned}
$$

From the initial condition that at $t=0, x=0$, and $\dot{x}=0$. Then we have $B=0$ and $A=-x_{0}$ (the amplitude)

$$
x=x_{0}\left[1-\cos \left(\omega_{0} t\right)\right],
$$

The system undergoes a motion of simple harmonics. The total amplitude of oscillation is $L=2 x_{0}$. So we have

$$
L=2 x_{0}=2 \frac{m g}{k_{0}}=\frac{2 m g}{\frac{\gamma P_{0} A^{2}}{V}}=\frac{2 m g V}{\gamma P_{0} A^{2}}
$$

or

$$
\frac{\gamma P_{0} A^{2} L^{2}}{2 V}=m g L
$$

((Note)) Approach from the Energy conservation

We now return to the original equation,

$$
m \ddot{x}=m g-k_{0} x
$$

Multiplying \dot{x} on both sides,

$$
m \ddot{x} \ddot{x}=m g \dot{x}-k_{0} x \dot{x}
$$

or

$$
\frac{d}{d t}\left(\frac{m}{2} \dot{x}^{2}-m g x+\frac{1}{2} k_{0} x^{2}\right)=0
$$

This leads to the energy conservation law,

$$
\frac{m}{2} \dot{x}^{2}-m g x+\frac{1}{2} k_{0} x^{2}=E(\text { constant })
$$

Since $\dot{x}=0$ and $x=0, \dot{x}=0$ and $x=x_{1}$, we have

$$
E=0=-m g x_{1}+\frac{k_{0}}{2} x_{1}^{2}
$$

leading to

$$
2 m g=k x_{1}
$$

or

$$
x_{1}=\frac{2 m g}{k}=2 x_{0}=L
$$

leading to the relation

$$
\frac{\gamma P_{0} A^{2} L^{2}}{2 V}=m g L
$$

where $m=$ mass $(\mathrm{kg}), \mathrm{g}=$ gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right), V=$ volume of tube $\left(\mathrm{m}^{3}\right), P_{0}=1 \mathrm{~atm}$ $(\mathrm{Pa}), A=$ cross sectional area $\left(\mathrm{m}^{2}\right)$, and $L=$ distance where mass has initially dropped (m).

((Blundell))

I think that the second part of the solution is wrong.

12.6 The change is adiabatic, so that

$$
\begin{equation*}
\frac{\mathrm{d} p}{p}=-\gamma \frac{\mathrm{d} V}{V} . \tag{1}
\end{equation*}
$$

If the ball moves up a distance x, then $\mathrm{d} V=A \mathrm{~d} x$ and the extra force on the ball is $A \mathrm{~d} p=m \ddot{x}$ and so

$$
m \ddot{x}+k x=0
$$

where

$$
k=\frac{A^{2} p \gamma}{V}
$$

and hence simple harmonic oscillation results with

$$
\omega^{2}=\frac{A^{2} p \gamma}{m V},
$$

and the period $\tau=2 \pi / \omega$ results.
In Rinkel's modification, one equates gravitational PE with "spring" energy, so that

$$
m g L=\frac{1}{2} k(L / 2)^{2}=\frac{\gamma p A^{2} L^{2}}{8 V}
$$

(Note that in this case the amplitude of the oscillation is L, which is from $-L / 2$ to $L / 2$, so the stored "spring" energy is $\frac{1}{2} k(L / 2)^{2}$.)

