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Thermodynamics in elastic rod:
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Internal energy

dU =TdS — PdV =TdS + fdi

The correspondence:
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Maxwell’s relation:
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3. Maxwell’s relation
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4. Problem and solution

R. Kubo, Thermodynamics An Advanced Course with Problems and Solutions (North-
Holland, 1968). Problem 3-34

34. The figure shows the experimental data for the tension of a suitably vulcan-
ized rubber band maintained at a constant length plotted against the
temperature. Let /, be the natural length of the rubber band at temperature
T, and [ the actual length. The total tension (stress x cross-section) is related

tolas
X=AT[I—I — {1+ o(T — Tp)} (ll‘l) ]

where o is the thermal expansion coefficient and is approximately equal to
7x 10~ % deg~'. Obtain the change in temperature T, when the rubber band
at temperature Ty, is stretched suddenly (adiabatically) from its natural length
l, to L times that. (This is called the Joule effect.) Plot AT as a function of L.
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34, The rate of temperature change due to the adiabatic elongation of a rubber

band is given as
as (as T (X o
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where C, is the heat capacity at constant length. Here the Maxwell relation,
(0S/ol)y= —(0X/T), obtained from dF= — SdT+ Xd/, was used. For T=T,
the given equation becomes
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The temperature change due to an adiabatic elongation from L=1 to L is
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If T, =300 °K, 6=aT,=0.21. The expression in parentheses in (2) vanishes
when L=1+g¢, where ¢ is determined by 3e+¢% =285, or

e=%5 — 4 =0.14 — 1:0.020 = 0.13.
Equation (2) is plotted against L in the figure.
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NotEe: The relation given in this problem between the tension and the strain
can be derived from the statistical mechanical theory of rubber elasticity and
actually applies quite well to moderately vulcanized rubber and also to some
other kinds of rubber-like materials. The thermal effect that is considered
here is called the Joule effect. As seen in the figure, the fact that AT<0 for
small strains is due to thermal expansion. Ignoring this, such rubber-like
materials are heated up (47> 0) when they are elongated adiabatically. This
is a characteristic of rubber-like elasticity. One can easily verify this with a
rubber band.
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where we use the Maxwell’s relation
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and the heat capacity is
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The force f is given by

f-x =AT[li—{1+a<T—1;)}(l7°j
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Thus we get
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The temperature change due to an adiabatic elongation;
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parameter a = o7, is changed for a=0 (red), 0.1, 0.2, 0.3, 0.4, and 0.5 (blue).



