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When we discuss the magnetic work in the thermodynamics, we realize that the internal 

energy is expressed in terms of different forms, 

 

MdBTdSdUR  ,  BdMTdSdUK   

 

where the suffixes R and K denote the names of Reif and Kittel, for convenience. There are two 

gedanken experiments on the magnetic work, (1) Kittel and (ii) Reif. The expression of the 

internal energy is different, depending on the experiments. First we show such gedanken 

experiments. 

In the quantum mechanics, the mutual energy should be equal to MdB  as is expected from 

the Zeeman energy. This means that Reif’s expression is close to the prediction from the 

quantum mechanics. Note that the origin of the magnetic energy lies in the quantum mechanics, 

but not in the classical physics since no work can be done for the Lorentz force. 

Here we discuss the validity of the two expressions based on the quantum statistical 

mechanics. To this end, we use the simple model of spin 1/2 paramagnet. We show that the 

Reis’s expression can be derived from this method. 

It is important to stress that the results of the thermodynamic properties based on the Reif 

notation are the same as those based on the Kittel’s notation. The thermodynamics of 

superconductivity can be discussed mainly in terms of the Kittel’s notation. 

 

1. Gedanken experiment on the magnetic work by Kittel (classical method) 

 

 



 

Fig. Magnetic material (cylinder) inside the solenoid with area A1 and distance l. 

 

The magnetic material is put inside the coil. The magnetic field is produced by current 

through the coil. The magnetic material can be magnetized. 

 

For a coil having 1n  turns per unit length, we apply the Ampere’s theorem. 
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Fig. Ampere’s law for the magnetic field of the solenoid 

 

The magnetic flux density B inside the magnetic material is 

 

01 4 MHB   



 

where 0M  is the magnetic moment per unit volume. The magnetic flux 0  is given by 
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When 1I  is increased, 1H  and 0M  cahnges. Then B also changes. Thus the voltage V is 

generated inside the coil, 
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The work done by the power supply during the time dt, 
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Noting that 

 

01 4 MHB   

 

we have 
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This is the work done on the system consisting of the sample plus field. We use M which is the 

total magnetic moment of the sample, the magnetic field H, and volume V as 

 

MMV 02 , HH 1 , VV 1  

 

So we have 
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The internal energy is given by 
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When we use B instead of H in Eq.(2), we have the final form, 
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2. Gedanken experiment on the magnetic work by Reif 

We consider the force exerted by a magnetic field H on a magnetic moment represented by a 

small rectangular current loop. There is a net x component of force shown in Fig. below, where I 

is the current and M is the magnetic moment of the loop. The force on a large sample can be 

regarded as due to the superposition of forces on many such infinitesimal moments. 
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The magnetic moment is defined by 
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Net x-component for the force 
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Then the work done by the system is 
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The work done on the system (Reif) is 

 

MdHdWdW outR   (3) 
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This is the work done on the system in some given magnetic field. It is the work done on the 

system consisting of the sample alone. The internal energy is given by 

 

MdHTdSdUR   (4) 

 

 

When we use B instead of H in Eq.(4), we have the final form 

 

MdBTdSdUR   (4’) 

 

or 
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3. Relation between KU  and RU  

We now consider the relation between two expressions KU  and RU . We introduce *U  as 

 

MBUU R * . 

 

Thus we have 

 

BdMTdSdU *  

 

The internal energy KdU  can be rewritten in the exact way, as 

 

)
8

(

8

2
*

2





VB
Ud

VB
dBdMTdSdUK













 

 

which leads to 
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For now we omit the term 
8

2VB
. Then we have 

 



BdMTdSdUdUK  * , 
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4. Thermodynamic relations by Reif 

 

MdBTdSPdVTdSdUR   

 

leading to the corresponding relation 

 

MP , BV   

 

 
 

Fig. Born diagram using the definition by Reif; MP , BV   

 

where 

 

P, B  (intensive variables) 

M, V  (extensive variables) 
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Helmholtz free energy: 

 

STUF RR  ,  MBFG RR   
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Gibbs free energy: 

 

MBFG RR   
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RG is a function of T and M. 

 

((Thermodynamic analysis)) 
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where BC  is the heat capacity at fixed B.  

 

((Example)) 

For the paramagnet, M  is given by 
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where C is the Curie constant. Using the expression of M, we have 
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This means that in the isothermal process, the entropy decreases with increasing magnetic field. 

We also mote that 
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which means that the temperature decreases with decreasing B during the adiabatic process. 

 

5. Thermodynamic properties by Kittel (Stanley) 

 

BdMTdSPdVTdSdUK   

 

leading to the corresponding relation 
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Fig. Born diagram using the definition by Kittel; BP , MV   
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where 

 

P, B  (intensive) 

M, V  (extensive) 

 

Helmholtz free energy: 
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KF  is a function of T and M. 

 

Gibbs free energy: 
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KG is a function of T and B. 
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((Maxwell relation)) 
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(a) Isothermal process 

 

Maxwell’s relation: 
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For the paramagnet, M  is given by 
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where C is the Curie constant. Using the expression of M, we have 
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This means that in the isothermal process, the entropy decreases with increasing magnetic field. 

 

(b) Isentropic process 
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where CB is the heat capacity at constant B and is positive and 0
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which means that the temperature decreases with decreasing B during the adiabatic process. 

 

So we note that the Maxwell’s relation (1) for the Reif type is the same as that (2) for the Kittel 

type. 

 

6 Magnetic work derived from quantum statistics (MacDonald) 

The magnetic work is equal to zero in classical physics since the scalar product of the 

Lorentz force and the displacement vector is always equal to zero. On the other hand, in quantum 

mechanics, the magnetic work is equal to a Zeeman energy given by a form BM  . In this 

sense, the magnetic work should be treated in terms of the quantum mechanics. To this end we 

consider a simple case such as a paramagnet where the electron with the spin (S =  1/2) is under 

the presence of an external magnetic field B.  

There are two states (up state and down state) of the magnetic moment B ). Both states are 

assumed to be nondegenerate. We apply an external magnetic field B in the up direction. So that 

a positive magnetic moment has an negative energy BB , while a nagative magnetic moment 

has a positive magnetic energy BB . The energy difference is BB2 . 

 

The probability for finding the system with the positive magnetic moment is 
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The probability for finding the system with the negative magnetic moment is 
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The internal energy U is given by 
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The magnetization M: 
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The entropy S: 
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In another approach, using the partition function Z for the canonical ensemble defined by 
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we can also calculate the Helmholtz energy F, the entropy S, and the magnetization M as follows. 

The Helmholtz free energy: 
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The magnetization M: 
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The expressions of S and M thus obtained are the same as those derived above. Since F  is a 

function of B and T, dF  can be expressed by 
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Thus we have 
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The internal energy U is related to the Helmholtz free energy F as 
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We now consider the Gibbs free energy defined by 
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So the Gibbs free energy G depends on T and M, 
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We now derive the expression of magnetic field B in terms of M and T. To this end, we start with 
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The magnetic field B can be uniquely obtained as 
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F can be also evaluated as 
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The Gibbs free energy is obtained as 
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Thus we have 
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and 
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Then dG can be expressed by 
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Here we note that 
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Using the relations 

 

BdMSdTdG   

 

SdTMdBdF   

 

MBSTUMBFG   

 

we get 

 

MBSTGU   

 

and 
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 )()(

 

 

In summary, it is reasonable to conclude that from a view point of quantum statistical physics, 

 

MdBTdSdU   and BdMSdTdG   

 

The expression for dU is the same as that derived by Reif and the expression for dG is the same 

as that derived by Kittel. We agree with the comment by Robertson that the magnetic work done 

on the system by the mutual energy must be MdB  

 

7. Problem and solution (1) 

K. Huang  

Introduction to Statistical mechanics, second edition (CRC Press, 2010) 

 

((Problem 3-8)) 

Thermodynamic variables for magnetic system are B, M, T, where B is the magnetic field, M is 

the magnetization, and T the absolute temperature. The magnetic work is 

 

BdMdW  , 

 

and the first law states BdMTdSdU  . The equation of state is given by Curie’s law 

 

T

B
CM  , 



 

where C  (>0) is the Curie constant. This is valid only at small B and high T. The heat capacity at 

constant B is denoted by BC , and that at constant M is MC . Many thermodynamics relations can 

be obtained from those of a PVT system by the correspondence PB , MV   

(a) Show 
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(b) From the analog of the energy equation and Curie’s law, show that 
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This is the analog of the statement that the internal energy of the ideal gas is independent of the 

volume. 

(c) Show 
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____________________________________________________________________________ 

Here we use the correspondence relations such that 

 

BP  (intensive quantity) 

 

MV   (extensive quantity) 

 

PdVTdSdU    HdMTdSdU   

 



 
 

____________________________________________________________________________ 

 

((Solution)) 

(a) 

 

HdMTdSdU   

 

The heat capacity: 
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(b) 
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where we use the Maxwell’s relation: 
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M is given by the Curie law as 
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Noting that 
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we have 
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(c) 
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or 

 

T

BT

B

BTTB

T

TB

TB

T

M

B

M

T

M

B

S
T

T

S
T

T

M

B

S

B

M

T

S

B

M

T

B

M

T

M

B

S

T

S

B

M

T
C

































































































































































][  

 

Using the Maxwell’s relation 
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Then we get 
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For the paramagnetic system,  
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8. Problem and solution (2) 

K. Huang  

Introduction to Statistical mechanics, second edition (CRC Press, 2010) 

 

((Problem 3-9)) 

Define the free energy ),( TMF  and Gibbs energy ),( TBG  of a magnetic system by analogy 

with the PVT system. 

(a) Show 

 

BdMSdTdF  ,  MdBSdTdG   

 

(b) Show 
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hence 
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(c) With the help of the chain rule, show 
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((Solution)) 

Helmholtz free energy F 

Gibbs free energy G  

 

HdMTdSPdVTdSdU   

 

STUF  ,  HMFPVFG   

 

where BP , MV   (Kittel) 
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(b) 
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Since 
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(b) 

 

Noting that 
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we get the relation 
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we have 
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