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When we discuss the magnetic work in the thermodynamics, we realize that the internal
energy is expressed in terms of different forms,

dU, =TdS - MdB, dU, =TdS + BdM

where the suffixes R and K denote the names of Reif and Kittel, for convenience. There are two
gedanken experiments on the magnetic work, (1) Kittel and (ii) Reif. The expression of the
internal energy is different, depending on the experiments. First we show such gedanken
experiments.

In the quantum mechanics, the mutual energy should be equal to — MdB as is expected from
the Zeeman energy. This means that Reif’s expression is close to the prediction from the
quantum mechanics. Note that the origin of the magnetic energy lies in the quantum mechanics,
but not in the classical physics since no work can be done for the Lorentz force.

Here we discuss the validity of the two expressions based on the quantum statistical
mechanics. To this end, we use the simple model of spin 1/2 paramagnet. We show that the
Reis’s expression can be derived from this method.

It 1s important to stress that the results of the thermodynamic properties based on the Reif
notation are the same as those based on the Kittel’s notation. The thermodynamics of
superconductivity can be discussed mainly in terms of the Kittel’s notation.

1. Gedanken experiment on the magnetic work by Kittel (classical method)
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Fig. Magnetic material (cylinder) inside the solenoid with area 41 and distance /.

The magnetic material is put inside the coil. The magnetic field is produced by current
through the coil. The magnetic material can be magnetized.

For a coil having n, turns per unit length, we apply the Ampere’s theorem.
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Fig. Ampere’s law for the magnetic field of the solenoid
The magnetic flux density B inside the magnetic material is

B=H, +47M,



where M|, is the magnetic moment per unit volume. The magnetic flux @, is given by
®,=(4-4,)H, + A4,B

When [, is increased, H, and M cahnges. Then B also changes. Thus the voltage V'is

generated inside the coil,

1 . do 1 dH. dB
V=—enl—L=——nl[(4 —A4)—-+ A4, —
cnl di cnl [(4 5) d 2"

]

The work done by the power supply during the time dz,

W, =(-Ld)V
—Idt(—nll)[(A A=t a, | 4 —]

Hl

= —‘(A1 —A,)ldH, + i A,)ldB]
4r

=V, - V) 1dH +V41dB

where
4
H =—nl, Vi=Al, V,=A4,
Noting that
B=H +42M,

we have



aw, = —vyHram +v, Aiap
4 4
= Vlia’Hl + Vzﬂ(dB —dH))
A 4

2
= d(V‘Hl j+ V,H.dM,
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This is the work done on the system consisting of the sample plus field. We use M which is the
total magnetic moment of the sample, the magnetic field H, and volume V as

VM,=M, H =H, V.=V
So we have
2
dw, :d(VgH j+HdM (1)
T

The internal energy is given by

VH?
dU, =TdS +dW, =TdS + HdM +d < ()
T

When we use B instead of H in Eq.(2), we have the final form,

2
dUK=TdS+BdM+d(VB j (2%)
87
2. Gedanken experiment on the magnetic work by Reif

We consider the force exerted by a magnetic field H on a magnetic moment represented by a
small rectangular current loop. There is a net x component of force shown in Fig. below, where /
is the current and M is the magnetic moment of the loop. The force on a large sample can be
regarded as due to the superposition of forces on many such infinitesimal moments.
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Fig. F,= é[dy[H(x) + %dx] , F = %IdyH(x)

The magnetic moment is defined by

M = lIA = lIa’xdy
c c

Net x-component for the force

F = £dy(H +6—H
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Then the work done by the system is

= dex :Ma_de = MdH
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The work done on the system (Reif) is

AW, =—dW, =-MdH
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This is the work done on the system in some given magnetic field. It is the work done on the
system consisting of the sample alone. The internal energy is given by

dU , = TdS — MdH (4)

When we use B instead of H in Eq.(4), we have the final form

dU, =TdS — MdB 4)
or

dUyp =TdS —d(MB) + BdM
3. Relation between U, and U,

We now consider the relation between two expressions U, and U, . We introduce U~ as
U =U,+MB.
Thus we have
dU" =TdS + BdM

The internal energy dU, can be rewritten in the exact way, as

2
dU, =TdS + BdM + d( VB j

&7
2
y (U* N VB )
8
which leads to
2
UK:U*+VB : U,=U" -MB

&7

2

For now we omit the term . Then we have
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dU, =dU" =TdS + BdM ,
dU, =d(U" — MB) =TdS — MdB
4. Thermodynamic relations by Reif
dU, =TdS — PdV =TdS — MdB
leading to the corresponding relation

P> M, V—>B

T

Fig. Born diagram using the definition by Reif; P > M ,V —> B
where

P, B (intensive variables)
M,V (extensive variables)



Helmbholtz free energy:

F,=U,-ST, G,=F,+MB
dF, =dU, — d(ST)

=T1dS — MdB - SdT —TdS
=-8dT — MdB

{5 ()
or ), oB ),

Gibbs free energy:

G,=F,+MB
dG, = dF, +d(MB)
= —SdT — MdB + MdB + BdM
= —SdT + BdM

G, is a function of 7 and M.

((Thermodynamic analysis))

(a_Sj =(aﬂj (Maxwell’s relation)
oB), \ 0T ),

and
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where C; is the heat capacity at fixed B.

0B “¢,\oB or
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((Example))
For the paramagnet, M is given by

M = y(T)B
with
C
T)=—
x(T) p

where C is the Curie constant. Using the expression of M, we have

[ﬁj = Bm = —B£<O (Isothermal process)
T

OB oT T*



This means that in the isothermal process, the entropy decreases with increasing magnetic field.
We also mote that

oT
— 1 >0 Isentropic coolin
[ B l ( p g)

which means that the temperature decreases with decreasing B during the adiabatic process.
S Thermodynamic properties by Kittel (Stanley)
dU, =TdS — PdV =TdS + BdM

leading to the corresponding relation

P— B, V—>-M

T

Fig. Born diagram using the definition by Kittel; P - B,V —»-M



where

P,B (intensive)
M,V (extensive)

Helmbholtz free energy:

F,=U, - ST,
dF, =dU, —d(ST)

=T1dS + BdM — SdT —TdS
=-SdT + BdM

- _(%j H= (%j
or ), oM ),
F is a function of 7 and M.

Gibbs free energy:

G, =F,—MB

dG, = dF, —d(MB)
= —SdT + BdM — MdB — BdM
= —S8dT — MdB

G, 1s a function of 7'and B.

) e
or ), oB ),

((Maxwell relation))
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(a) Isothermal process

Maxwell’s relation:

oS oM
(5, (5) <2>
0B ), oT ),
For the paramagnet, M is given by

M = y(T)B

with
C
T)=—
x(T) 7

where C is the Curie constant. Using the expression of M, we have

[@j :B_‘al(T):_B%q)
oB),  or T

This means that in the isothermal process, the entropy decreases with increasing magnetic field.

(b) Isentropic process
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where Cg is the heat capacity at constant B and is positive and (8_5} < 0. Thus we have

T
(%)
— | >
0B )

which means that the temperature decreases with decreasing B during the adiabatic process.

So we note that the Maxwell’s relation (1) for the Reif type is the same as that (2) for the Kittel
type.

6 Magnetic work derived from quantum statistics (MacDonald)

The magnetic work is equal to zero in classical physics since the scalar product of the
Lorentz force and the displacement vector is always equal to zero. On the other hand, in quantum
mechanics, the magnetic work is equal to a Zeeman energy given by a form — M - B . In this
sense, the magnetic work should be treated in terms of the quantum mechanics. To this end we
consider a simple case such as a paramagnet where the electron with the spin (S = 1/2) is under
the presence of an external magnetic field B.

There are two states (up state and down state) of the magnetic moment 2, ). Both states are
assumed to be nondegenerate. We apply an external magnetic field B in the up direction. So that
a positive magnetic moment has an negative energy — 1,5, while a nagative magnetic moment

has a positive magnetic energy + u,B. The energy difference is 2u,B .

The probability for finding the system with the positive magnetic moment is



_ exp(fusB)
" exp(fu,B) +exp(—pi,;B)

The probability for finding the system with the negative magnetic moment is

_ exp(—fu,B)
~ exp(BuyB)+exp(—fu,B)

The internal energy U is given by

U = upBP, +(-uzB)P.
_ HpBlexp(fuyB) —exp(— S, B)]
exp(fyB) + exp(—fu,B)
= pyBtanh(fu,B)

The magnetization M:

M =y, P, + (=) P
_ Hplexp(fu;B) — exp(=fu,B)]
exp( S B) + exp(—fyB)
= pp tanh(Su,B)

The entropy S:

S=-k;(PInP.+P InP)
= k, In[2 cosh(Bu, B)] ~ k, fu, B tanh( i, B)

Then we have

F=U-ST

= ppBtanh(fu, B) — kpT{=pu,; B tanh(fSu, B) + In[(2 cosh(Su, B)]}
=—k,T In[(2cosh(fu,B)]}

In another approach, using the partition function Z for the canonical ensemble defined by

Z = exp( B, B) +exp(~ i, B)
=2cosh(fuyB)



we can also calculate the Helmholtz energy F, the entropy S, and the magnetization M as follows.
The Helmholtz free energy:

F=—k,TInZ =—k,T In[2cosh(fu,B)]
The entropy S:

S = —[Z—?J = ky {In[2cosh(Bu, B)] - u, B tanh(fu,B)}

The magnetization M:

- {5)
0B ),

= p tanh( S, B)

The expressions of S and M thus obtained are the same as those derived above. Since F' is a
function of B and 7, dF can be expressed by

dF=(a—Fj d3+(@_Fj dr
0B ), or ),

The derivatives (8_Fj and (G_Fj can be evaluated as
OB ), oT ),

oF
(8_3 ) =~y tanh(Su, B) = —-M
oF
[a_T =~k In(2cosh(fp; B)] + k; fp, B tanh( S, B)
B

=-S
Thus we have
dF = -MdB - SdT

The internal energy U is related to the Helmholtz free energy F as



F=U-S8T

We now consider the Gibbs free energy defined by
G=F+MB

leading to the relation

dG = d(F + MB)
=dF +d(MB)
=-SdT — MdB + MdB + BdM
=-SdT + BdM

So the Gibbs free energy G depends on 7 and M,

dG = (an dT + (G_Gj dM
oT ), oM ),
We now derive the expression of magnetic field B in terms of M and T. To this end, we start with

% - tanh(ﬂ,uBB) — eXp(Zﬂ/uBB) -1
Mg exp(2fu,B) +1

The magnetic field B can be uniquely obtained as

_b ﬂB+Mj
20uy \py—M

M
i I+—
Hp

= In
2Buy | _ M

Hp

1

[In(1+ M) —In(1- M)]

Hp Hp Hp

Since



My + M

exp(fu,; B) =
' My —M

F can be also evaluated as

F= —%ln[exp(ﬂﬂBB) +exp(— i1, B)]

:_lln[\/ﬂB"—M +\/:UB_M]

B \Npp—-M N py+M
1 2
= Inf ]
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The Gibbs free energy is obtained as

G=F+MB
M

1 1 Mo oMo 1 m |

= ——In2+—In[(1-"—)(1+ )] +——In| —£2
B 2/ Hp Hp 208 uy 1— %

Hp
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or

G = —%an +$[(l +£)1n(1 +M) +(1 —M)ln(l —M)]

Hp Hp Hp Hp

Thus we have

oG 1 M M

=B




and

oG\ _ ., .(9G
[a_TJM‘ kol (aﬂL
1

EkB[(l + M) In(1 + ﬂ) +(1 —ﬂ) In(1 —M)]

Hp

=—k,In2+

Hp Hp Hp

=-8

Then dG can be expressed by

dG = (G_Gj dT + (a—Gj am
oT ), oM ),
=-SdT + BdM

Here we note that

B

= = In[2c0sh(u, BY] - fa, 5 tanh( G, B)

= In[exp(BuyB) +exp(LuB)] - ﬂﬂBBﬂ}

B
zln[\/wM +\/ﬂB—M]_Mln y+M

Mg =M Mg+ M Hp py—M
1+% 1—% M
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Hp Hp

or
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Using the relations
dG =-8dT + BdM
dF =-MdB - SdT
G=F+MB=U-ST+MB
we get
U=G+ST-MB
and

dU =dG +d(ST) - d(MB)
= —SdT + BdM + SdT + TdS — MdB — BdM
= TdS — MdB

In summary, it is reasonable to conclude that from a view point of quantum statistical physics,
dU =TdS — MdB and  dG =-SdT + BdM

The expression for dU is the same as that derived by Reif and the expression for dG is the same
as that derived by Kittel. We agree with the comment by Robertson that the magnetic work done
on the system by the mutual energy must be — MdB

7. Problem and solution (1)
K. Huang
Introduction to Statistical mechanics, second edition (CRC Press, 2010)

((Problem 3-8))
Thermodynamic variables for magnetic system are B, M, T, where B is the magnetic field, M is
the magnetization, and 7 the absolute temperature. The magnetic work is

dW = BdM ,

and the first law states dU =TdS + BdM . The equation of state is given by Curie’s law



where C (>0) is the Curie constant. This is valid only at small B and high 7. The heat capacity at
constant B is denoted by C,, and that at constant M is C,, . Many thermodynamics relations can

be obtained from those of a PV'T system by the correspondence B —> P, V —-M
(a) Show

(L), o) {2
oT ), oT ), oT ),
(b) From the analog of the energy equation and Curie’s law, show that
[G_Uj )
oM ),

This is the analog of the statement that the internal energy of the ideal gas is independent of the
volume.
(©) Show

Here we use the correspondence relations such that
P—>B (intensive quantity)
V—-M (extensive quantity)

dU =TdS — PdV dU =TdS + HdM



((Solution))
(a)

dU =TdS + HdM

The heat capacity:

a5
or ),

6, -{Z) -(2) -#[2)
or), \or), ~\or ),

(b)

(G_Uj _H+ T(G_SJ _ H_T(a_Hj
oM ), oM ), or ),

where we use the Maxwell’s relation:

(o).,

M is given by the Curie law as



Noting that

(G_Bj _M_B
or), C T

we have

()543,
oM )., or ),
(c)

oS, M) oS, M)

(S . aS,M) __ oT.B) .. o(T.B)
C _T(GTJM = ey =T

(%)
o(T, B) 0B ).

or
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Using the Maxwell’s relation



(&) (&),

Then we get

ar);
€., = \OT )y

()

For the paramagnetic system,

M = gB
T
CB*
Cy—Cy=- T2
or
CB*> M’
C,-C, = =—
S S
8. Problem and solution (2)
K. Huang

Introduction to Statistical mechanics, second edition (CRC Press, 2010)

((Problem 3-9))
Define the free energy F(M,T) and Gibbs energy G(B,T) of a magnetic system by analogy

with the PV'T system.
(a) Show

dF =-8dT + BdM , dG =—-SdT — MdB

(b)  Show

(&) (7).



hence

(&) -2
oB), T*

(©) With the help of the chain rule, show

(%)%
oB), C,T

((Solution))
Helmholtz free energy F
Gibbs free energy G

dU =TdS — PdV — TdS + HdIM
F=U-S8T, G=F+PV >F-HM
where P —> B, V — -M (Kittel)
(a)

dF =d(U - ST)
= dU - SdT - TdS
= TdS + BdM — SdT —TdS
= —SdT + BdM



dG =d(F — BM)
= —SdT + BdM — BdM — MdB
= —SdT — MdB

(b)

s-{29)  u-{29)
or ), 0B ),

as) _ [(0) (oG
(aBl B (aBMaTjB
0°G
~ 0BOT
0°G
 0TOB

&5
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w-Sp () 8
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0B ), T’
(b)
Noting that

o(T,S) &(S,B) (B,T)
&(B,S) d(T,B) (S,T)

we get the relation



() (5],

Since

oB

1)-(3)-
or), \oT),

we have
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