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1. Exact differential 

We work in two dimensions, with similar definitions holding in any other number of 

dimensions. In two dimensions, a form of the type 

 

dyyxBdxyxA ),(),(   

is called a differential form. This form is called exact if there exists some scalar function ),( yxQ  
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The vector field ),( BA  is a conservative vector field, with corresponding potential Q. When a 

differential Q is exact, the function Q exist, 
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independent of the oath followed. 

In thermodynamics, when dQ is exact, the function Q is a state function of the system. The 

thermodynamics functions, E (or U) , S, H, F (or A), and G are state functions. An exact 

differential is sometimes also called a total differential or a full differential. 

 

2. Jacobian 



We consider two functions u and v such that 
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The Jacobian is defined as 
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It clearly has the following properties 
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The following relations also hold: 
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3. Expression of PC  and VC  

The heat capacity: 
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Using the Maxwell’s relation 
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and the relation 
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Then we get 
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For the ideal gas we have the Mayer relation 

 

RCC VP   

 

This is one of the most important equations of thermodynamics, and it shows that: 

 

(a) 0










TV

P
, leading to VP CC   

 

(b) As 0T , VP CC   

 

(c) VP CC   when 0










PT

V
. 

s 

For example, at 4°C at which the density of water is maximum, VP CC  . 

Using the volume expansion  and isothermal compressibility  
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We may write the equation in the form  

 


 2TV

CC VP   

 

4. Legendre transformation 

Legendre transforms appear in two places in a standard undergraduate physics curriculum: (i) 

in classical mechanics and (ii) in thermodynamics. The Legendre transform simply changes the 

independent variables in a function of two variables by application of the product rule. 

 

We start with the expression for the internal energy U as 

 

PdVTdSdU   

 

(a) Helmholtz free energy: F 

Using the relation 
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we have 
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Here we introduce the Helmholtz free energy F as 

 

STUF   

 

Thus we have the relation 
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(b) Enthalpy: H 

From the relation 
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we have 
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Here we introduce the enthalpy H as 

 

PVUH   

 

Thus we have 
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(c) Gibbs Free energy: 

Using the relation 
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we have 
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We introduce the Gibbs free energy G as 

 

PVFG   

 

with 

 

VdPSdTdG   

 

5. Thermodynamic potential 

 



 
 

Fig.  Born diagram. UE   (internal energy). FA   (Helmholtz free energy). 

 

(a) The internal energy ),( VSUU   

For an infinitesimal reversible process, we have 
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showing that 

 

VS

U
T 











 ,  
SV

U
P 











  

 

and 

 

VS S

P

V

T






















  (Maxwell’s equation) 

 

(b) The enthalpy ),( PSHH   

The enthalpy H is defined as 
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For an infinitesimal reversible process, 

 

VdPPdVdUdH   

 

but 

 

PdVTdSdU   

 

Therefore we have 
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showing that 

 

PS

H
T 











 ,  
SP

H
V 











  

 

and 

 

PS S

V

P

T






















.  (Maxwell’s equation) 

 

(c) The Helmholtz free energy ),( VTFF   

The Helmholtz free energy is defined as 

 

STUF   

 

For an infinitesimal reversible process, 
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showing that 
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  (Maxwell’s equation) 

 

We note that 
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  (Gibbs-Helmholtz equation) 

 

(d) The Gibbs free energy ),( PTGG   

The Gibbs free energy is defined as 
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For an infinitesimal reversible process, 
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with 

 

VdPTdSdH  , 

 

showing that 
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  (Maxwell’s equation) 

 

We note that 
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 2   (Gibbs-Helmholtz equation) 

 

6. Relations between the derivatives of thermodynamic quantities 

 

(a) First energy equation 
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Using the Maxwell’s relation  
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, we get 
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which is called the first energy equation. For the ideal gas ( TNkPV B ), we can make a proof of 

the Joule’s law.  
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In other words, U is independent of V: TCU V   (Joule’s law for ideal gas) 

 

(b) Second energy equation 
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Using the Maxwell’s relation  
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  (second energy equation) 

 

which is called the second energy equation. For an ideal gas, 
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In other words, U is independent of P: TCU V   (Joule’s law for ideal gas) 

 

7.  Generalized susceptibility 
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 ; isobaric expansivity 
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 ; adiabatic expansivity 
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 ; isothermal compressibility 
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8. The ratio 
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9. Mayer’s relation 

 



(a) Relation 
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The thermodynamics first law: 

 

PdVTdSdU   
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Transforming PC  to the variable T and P, 
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Here we use the Maxwell’s relation, 
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Note that 
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Then we have 
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(b) Relation 
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Similarly, transforming VC  to the variable T and V, 
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Using the Maxwell’s relation 
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10. Derivative of CV with respect to T (Reif, Blundell) 



 

TV

TV

VTT

V

V

S

T
T

V

S

T
T

VT

S
T

TV

S
T

T

S
T

VV

C




























































































2

2

][

 

 

Using the Maxwell’s relation 
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11. Derivative of PC  with respect to P (Reif, Blundell) 
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Using the Maxwell’s relation 
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12. Joule-Thomson expansion 
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Note that 
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So we get 
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Thus we have 
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APPENDIX 

Stokes theorem and conservative force 

 

1 Conservative force 

1.1 Path integral 

The work done by a conservative force on a particle moving between any two points is 

independent of the path taken by the particle. 
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for any path connecting two points A and B. 

 

1.2 Path integral along the closed path 

The work done by a conservative force on a particle moving through any closed path is zero. 

(A closed path is one for which the beginning point and the endpoint are identical). 

 

 
 

0 rF dc ,  for any closed path 

 

2 Potential energy U 

The quantity rF dc   can be expressed in the form of a perfect differential 

 

rF dWdU cc   

 

where the function U(r) depends only on the position vector r and does not depend explicitly on 

the velocity and time. A force Fc is conservative and U is known as the potential energy.  
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which does not depend on the path of integration but only on the initial and final positions. It is 

clear that the integral over a closed path is zero 

 

0 rF dc  (1) 



 

which is a different way of saying that the force field is conservative 

 

Using Stoke’s theorem; 
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we have  
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where   is a differential operator called del or nabla. The operator can be written in n terms of 

the Cartesian components x, y, z in the form 
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In this case, Fc can be expressed by 
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which leads to the relation 
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This relation can be used to decide whether a force is conservative or not on physical grounds. 

We note that 
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3 Stoke’s theorem 

Stokes' theorem (or Stokes's theorem) in differential geometry is a statement about the 

integration of differential forms which generalizes several theorems from vector calculus. It is 

named after Sir George Gabriel Stokes (1819–1903), although the first known statement of the 

theorem is by William Thomson (Lord Kelvin) and appears in a letter of his to Stokes. The 

theorem acquired its name from Stokes' habit of including it in the Cambridge prize 

examinations. In 1854, he asked his students to prove the theorem on an examination. It is 

unknown if anyone was able to do so. 

 

Let’s start off with the following surface with the indicated orientation. 

 



 
  

Around the edge of this surface we have a curve C. This curve is called the boundary curve. 

The orientation of the surface S will induce the positive orientation of C. To get the positive 

orientation of C think of yourself as walking along the curve. While you are walking along the 

curve if your head is pointing in the same direction as the unit normal vectors while the surface is 

on the left then you are walking in the positive direction on C. 

Now that we have this curve definition out of the way we can give Stokes’ Theorem. 

 

Stokes’ Theorem  

Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary 

curve C with positive orientation. Also let F be a vector field, then 

 

  dadd nFaFrF )()(  

 

In this theorem note that the surface S can actually be any surface so long as its boundary curve 

is given by C. This is something that can be used to our advantage to simplify the surface 

integral on occasion. 

 

4. Path integral and conservative force 

((Example)) Serway Problem 7-15 

A force acting on a particle moving in the x y plane is given by 

 

Njxiy )ˆˆ2( 2F ,  

 



where x and y are in meters. The particle moves from the origin to a final position having 

coordinates x = 5.00 m and y = 5.00 m as in Fig. Calculate the work done by F along (a) OAC, 

(b) OBC, (c) OC. (d) Is F conservative or nonconservative? Explain. 

 

 

 
 

((Solution)) 
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Path OAC 

On the path OA; x = 0 – 5, y = 0; jx ˆ2F  and dy = 0. 
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On the path AC; x = 5, y = 0 - 5; jj ˆ25ˆ52 F  
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Then we have 
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Path OBC 

On the path OB; x = 0, y = 0 - 5;  
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On the path BC; x = 0 - 5, y = 5; dxydxd 102  rF  
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Then we have 
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Path OC 

 

x = t, y = t for t = 0 – 5. 
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for the path OC line. Then the force is non-conservative.  

 

((Note)) 
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This implies that the force is not conservative. 

 

 


