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1. Exact differential

We work in two dimensions, with similar definitions holding in any other number of
dimensions. In two dimensions, a form of the type

A(x,y)dx + B(x,y)dy

is called a differential form. This form is called exact if there exists some scalar function Q(x, y)
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The vector field (A4, B) is a conservative vector field, with corresponding potential . When a

differential Q is exact, the function Q exist,
/
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independent of the oath followed.

In thermodynamics, when dQ is exact, the function Q is a state function of the system. The
thermodynamics functions, £ (or U) , S, H, F (or A), and G are state functions. An exact
differential is sometimes also called a total differential or a full differential.

2. Jacobian



We consider two functions # and v such that

u=u(x,y),

v=v(x,))

The Jacobian is defined as
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It clearly has the following properties
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The following relations also hold:
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3. Expression of C, and C,

The heat capacity:
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For the ideal gas we have the Mayer relation
C,-C,=R

This is one of the most important equations of thermodynamics, and it shows that:
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For example, at 4°C at which the density of water is maximum, C, =C,, .

Using the volume expansion £ and isothermal compressibility
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We may write the equation in the form
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4. Legendre transformation

Legendre transforms appear in two places in a standard undergraduate physics curriculum: (i)
in classical mechanics and (ii) in thermodynamics. The Legendre transform simply changes the
independent variables in a function of two variables by application of the product rule.

We start with the expression for the internal energy U as

dU =TdS - PdV

(a) Helmholtz free energy: F
Using the relation

dU =d(TS) - SdT — PdV
we have
d(U-TS)=-SdT — PdV
Here we introduce the Helmholtz free energy F as
F=U-8T
Thus we have the relation
dF =-SdT — PdV

(b) Enthalpy: H
From the relation

dU =TdS — PdV
= TdS —d(PV)+ VdP

we have



d(U + PV)=TdS +VdP

Here we introduce the enthalpy H as
H=U+PV
Thus we have

() Gibbs Free energy:
Using the relation

dF = -SdT - PdV
= —SdT —d(PV) + VdP

we have
\
d(F + PV)=-S8dT +VdP

We introduce the Gibbs free energy G as
G=F+PV
with

5. Thermodynamic potential



Fig. Born diagram. £ =U (internal energy). A = F (Helmholtz free energy).

(a) The internal energy U =U(S,V)

For an infinitesimal reversible process, we have

dU =TdS — PdV
showing that
oS ), v )s
and
(a_Tj = _(8_Pj (Maxwell’s equation)
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(b) The enthalpy H = H(S, P)
The enthalpy H is defined as

H=U+PV



For an infinitesimal reversible process,
dH =dU + PdV +VdP

but
dU =TdS — PdV

Therefore we have

dH =TdS +VdP
showing that
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(c) The Helmholtz free energy F = F(T,V)
The Helmbholtz free energy is defined as

F=U-S8T
For an infinitesimal reversible process,

dF =dU - 8dT - TdS
=T1dS — PdV — SdT —TdS
=-8dT — PdV

or
dF =-SdT — PdV

showing that
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We note that

U=F+ST=F - T(O—Fj = —TZ[i (EJ]V (Gibbs-Helmholtz equation)
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(d) The Gibbs free energy G = G(T,P)
The Gibbs free energy is defined as

G=F+PV=H-TS
For an infinitesimal reversible process,

dG =dH - SdT —-TdS
=T1dS +VdP - SdT —TdS

=-S8dT +VdP

or

dG =-SdT +VdP
with

dH =TdS +VdP
showing that
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(ﬁj = —(6—1/} (Maxwell’s equation)
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We note that
H=G+TS=G-T (%J =-T 2(£gj (Gibbs-Helmholtz equation)
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6. Relations between the derivatives of thermodynamic quantities
(a) First energy equation
dU =TdS — PdV
(a—U = o (TdS — PdV)
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Using the Maxwell’s relation (G_SJ = 6_PJ , we get
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which is called the first energy equation. For the ideal gas ( PV = Nk,T ), we can make a proof of
the Joule’s law.
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ov ),

(b) Second energy equation

dU =TdS — PdV



(a_Uj {ij (7dS - PdY)
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Using the Maxwell’s relation (G_Sj = _(G_Vj , we get
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which is called the second energy equation. For an ideal gas,
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7. Generalized susceptibility
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Ky = _i(@_V ; isothermal compressibility
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Kg = —i(ﬁ—Vj ; adiabatic compressibility
V\oP )

8. The ratio y = L3
G,
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9. Mayer’s relation
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The thermodynamics first law:

(a) Relation C, =C, - T

dU =TdS - PdV
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Transforming C, to the variable 7'and P,
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Then we have
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Similarly, transforming C, to the variable 7 and V,



s\ _asy)
[aTjV AT,V
a(S,V)
_ AT, P)
oT,V)
o(T,P)

)
15 )
7232
o E)

()
oP ),

VR
[S) eI N Ne)
wﬂ|ca

7\
I
3|

28

(@)

()}
N

5>—

Using the Maxwell’s relation
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10. Derivative of Cv with respect to 7 (Reif, Blundell)
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11. Derivative of C, with respect to P (Reif, Blundell)
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Using the Maxwell’s relation
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12. Joule-Thomson expansion
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APPENDIX
Stokes theorem and conservative force

1 Conservative force

1.1 Path integral

The work done by a conservative force on a particle moving between any two points is
independent of the path taken by the particle.




J Fc-dr=J F,-dr= F,-dr
Path—-1 Path-2 Path-3

for any path connecting two points A and B.

1.2 Path integral along the closed path
The work done by a conservative force on a particle moving through any closed path is zero.
(A closed path is one for which the beginning point and the endpoint are identical).

§Fc -dr=0, for any closed path

2 Potential energy U
The quantity F, -dr can be expressed in the form of a perfect differential

dU =W, =—F. -dr

where the function U(r) depends only on the position vector r and does not depend explicitly on
the velocity and time. A force F. is conservative and U is known as the potential energy.

TFC dr = —TdU =U(A)-U(B)

which does not depend on the path of integration but only on the initial and final positions. It is
clear that the integral over a closed path is zero

jEFC-dr:o (1)



which is a different way of saying that the force field is conservative
Using Stoke’s theorem;

For any vector A4,
jEA-dr:j(vXA)-da.

Since
§F.-dr=[(VxF,)-da=0

we have
VxF, =0, (2)
where V is a differential operator called del or nabla. The operator can be written in n terms of

the Cartesian components x, y, z in the form
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which leads to the relation
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This relation can be used to decide whether a force is conservative or not on physical grounds.

We note that
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3 Stoke’s theorem
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Stokes' theorem (or Stokes's theorem) in differential geometry is a statement about the
integration of differential forms which generalizes several theorems from vector calculus. It is
named after Sir George Gabriel Stokes (1819-1903), although the first known statement of the

theorem is by William Thomson (Lord Kelvin) and appears in a letter of his to Stokes. The
theorem acquired its name from Stokes' habit of including it in the Cambridge prize
examinations. In 1854, he asked his students to prove the theorem on an examination. It is
unknown if anyone was able to do so.

Let’s start off with the following surface with the indicated orientation.



Around the edge of this surface we have a curve C. This curve is called the boundary curve.
The orientation of the surface S will induce the positive orientation of C. To get the positive
orientation of C think of yourself as walking along the curve. While you are walking along the
curve if your head is pointing in the same direction as the unit normal vectors while the surface is
on the left then you are walking in the positive direction on C.

Now that we have this curve definition out of the way we can give Stokes’ Theorem.

Stokes’ Theorem

Let S be an oriented smooth surface that is bounded by a simple, closed, smooth boundary
curve C with positive orientation. Also let F be a vector field, then

jEF-dr:j(vXF)-da:j(vXF)-nda

In this theorem note that the surface S can actually be any surface so long as its boundary curve
is given by C. This is something that can be used to our advantage to simplify the surface
integral on occasion.

4. Path integral and conservative force

((Example)) Serway Problem 7-15
A force acting on a particle moving in the x y plane is given by

F=Qyi +x*))N,



where x and y are in meters. The particle moves from the origin to a final position having
coordinates x = 5.00 m and y = 5.00 m as in Fig. Calculate the work done by F along (a) OAC,
(b) OBC, (c) OC. (d) Is F conservative or nonconservative? Explain.

B A i(5.5)

((Solution))
F-dr=Fdx+F dy=2ydx+ x’dy

Path OAC
On the path OA; x=0-5,y=0; F =x"j and dy=0.

A
J.F..dr=0
o
On the path AC; x=5,y=0-5; F=5>j=25]
C 5
[F.-dr=[25dy =125
A 0

Then we have



C
J.F. -dr =125J for the path OAC
o

Path OBC
On the path OB; x=0,y=0-5;

F -dr=2ydx and dx =0

or

B
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On the path BC; x=0-5,y=5; F-dr =2ydx =10dx
C 5
jF-drzjlodxzso
B 0

Then we have

C
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Path OC
x=t,y=tfort=0-5.

2ydx + x*dy = 2tdt + £*dt = (* + 2t)dt

C 5 2
jF-dr:j(t2+2t)dt=12—5+25—=@J
) ) 3 72 3

for the path OC line. Then the force is non-conservative.

((Note))

F=Qyi +x*j)N
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This implies that the force is not conservative.



