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We consider a system enclosed by an adiabatic wall. By an adiabatic wall we mean that 

energy cannot be transferred through this wall. The system can be a gas, liquid, or solid. 

For this system, the volume V , the number of particles N, and the total energy E are kept 

constant. These variables represent the only possible constraints for this system. Other than 

these constraints, we cannot place any restriction on the microscopic motions of the 

molecules. Therefore, according to the principle of equal probability, each molecule can 

do anything that is possible under these macroscopic constraints, and various microscopic 

states should be realized with equal probability in thermal equilibrium. Among these 

microscopic states, some states may be quite special, such that they will not be realized in 

reality. However, except for a few such exceptional states, almost all microscopic states 

will actually be realized as the state of the system changes temporally. Because of the vast 

number of possible microscopic states, the exceptional states will practically never be 

realized anyway; this is the conclusion of the previous chapter. We call this situation, where 

every possible microscopic state is realized with equal probability, the micro-canonical 

distribution. We write the total number of microscopic states allowed under the 

macroscopic constraints as W(E, δE, V,N). Therefore, the probability of each microscopic 

state being realized is 1/W. Here we have allowed some uncertainty δE in the total energy, 

and have counted microscopic states where the total energy is between E and E + δE. Using 

this W, we define the entropy S(E, δE, V,N) as follows: 
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Furthermore, we define the temperature of the system as follows: In this equation, the 

partial differentiation is done keeping δE, N, and V fixed. As we shall see later, the 

temperature thus defined coincides with the temperature defined by thermodynamics. 

 

1. Approach I: Classical free particles (the number of particles, N) 

The total number of states for the energy of the system between 0 and E 
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Suppose that  
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The integral part corresponds to the volume of momentum space (3N dimension) with 

radius E . Using the formula of the volume of the hypersphere with radius E , we get 

the phase-space volume (see the Appendix for the calculation of the volume of 

hypersphere) 
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where 
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The density of states is 
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The number of states between E and EE   
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The entropy S is defined by 
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where we use the Stirling’s relation 
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In the limit of large N, we pick up only the terms which is proportional to N. The entropy 

S can be written as 
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From the relation 
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we have 
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The Helmholtz free energy: 
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Since SdTPdVdF  , the pressure is obtained as 
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leading to the Boyle’s law 
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This can be rewritten as 
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2. From micro-canonical ensemble to canonical ensemble 

First we consider the results from the micro-canonical ensemble for classical free 

particles. We calculate the ratio 

 



2/3

2/3

2/3

2

2/3

2

)
3

2
1(

)1(

)1
2

3
(

1
)

2
(

 !

)1
2

3
(

1
]

)(2
[

 !

),(

),(

N

B

N

N
N

N
N

TkN

E

Nh

mE

N

V

Nh

Em

N

V

EN

EN


























 

 

where 

 

Tk
N

E B
2

3
  

 

In the limit of N , we get 
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Then we have 
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We assume that the system is in a single state with the energy  . Then the probability of finding 

the system in the state with the energy  isgiven by 

 


 




 e
EN

EN
p

),(

),(1
)( , 

 

which corresponds to the probability of canonical ensemble. 

 



3. Derivation of Maxwell-Boltzmann distribution function from the micro-canonical 

ensemble 

We start with the number of states given by 
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Suppose that  
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The integral part corresponds to the volume of momentum space ( 33143  NN  

dimension) with radius 
m

E
2

2
p

 . Using the formula of the volume of the hypersphere 

with radius E , we get the phase-space volume (see the Appendix for the calculation of 

the volume of hypersphere) 

 

)1(
2

32
)1(

2

3

3

)1(
2

3

3

1 )
2

( 

)1
2

)1(3
(

!

1
)2( ),.(













N
N

N

N
N

m
E

Nh

V

N
mdEN

p
p


 

 

The density of states is 
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The number of states between E and EE   is 
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We note that 
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Now we calculate the ratio 
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where 
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  (in the limit of N ). 

 

Thus we have 
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This form is exactly the same as that of the Maxwell-Boltzmann distribution function 
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((Mathematica)) 

 



 
 

 

4. Application II: simple harmonics 

The total number of states for the energy of the system between 0 and E 
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The integral part corresponds to the volume of momentum space (6N dimension) with 

radius E . Using the formula of the volume of the hypersphere with radius E , we get 

the phase-space volume as 
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The density of states is 
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The number of states between E and EE   
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The entropy S is 
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In the limit of large N, we pick up only the terms which is proportional to N. The entropy 

S can be written as 
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From the relation 
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we have 
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We note that the energy contribution from the kinetic energy is 2/3 TNkB , while the energy 

contribution from the potential energy is 2/3 TNkB ; energy partition relation. 

 



5. Another method: classical simple harmonics 

We consider a one-dimensional simple harmonics with mass m and angular frequency 
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We introduce new variables 
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with the Jacobian determinant 
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We now consider the f simple harmonics with the same angular frequency . The total 

number of states for the energy of the system between 0 and E 
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where 1)( x  for x>0 , and 0 otherwise. 

 

1

1

1
11111

2
22 




 d
d

drrdPdQ   

 

Note that 
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Using the formula (see the note below), we get 

 

fff
f

ff

f

E

f

E

fh

E

ff

E

h
Ef )(

!

1
)

2

2
(

!

1
)

2
(

!

1

!
)

2
(

1
),(








 ℏℏ

  

 

The density of states is 
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The number of states between E and EE   
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The entropy S is 
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in the limit of large f. Using the relation 
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We note that the energy contribution from the kinetic energy is 2/TfkB , while the energy 

contribution from the potential energy is 2/TfkB ; energy partition relation. 

 

We note that 

 

f

f

f

f

f

f

E

E

E

E

f

E

f

Ef

Ef

)1(

)1(

)(

)(
!

1

)(
!

1

),(

),(



























ℏ

ℏ

 

 

In the limit of f , we have 
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We show the proof of the formula. 
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First we calculate the simple case (f = 2) 
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6. Photon 

We consider the case when the energy dispersion of photons is given by 
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where p is the momentum of photon, and c is the velocity of light.  

The total number of states for the energy of the system between 0 and E 
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Note that the energy of one particle is given by 
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where we use the formula 
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The density of states is 
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The number of states between E and EE   
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The entropy S is 
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The energy E is obtained as 
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The Helmholtz free energy: 
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Since SdTPdVdF  , the pressure is obtained as 
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which is different from the expression from the classical free particles.  

________________________________________________________________________

APPENDIX-I  Volume of n-dimensional supersphere 

An n-dimensional hypersphere of radius R consists of the locus of points such that the 

distance from the origin is less than or equal to R. A point in an n-dimensional Euclidean 

space is designated by ),...,,( 21 nxxx . In equation form, the hypersphere corresponds to the 

set of points such that 
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To compute the volume of this hypersphere, we simply integrate the infinitesimal volume 

element 

 

ndxdxdxdV ...21  

 

over the region of n-dimensional (D) space indicated by Eq.(1). We need to calculate the 

volume  

 

ndxdxdxdV ...21  

 

over the region of n-dimensional space indicated. We wish to compute this volume )(RVn . 

Explicitly, 
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The factor of nR  is a consequence of dimensional analysis. The surface “area” of the n-

dimensional hypersphere defined by eq. (1) will be denoted by 

 

)(1 RSn . 

 

The surface of the hypersphere corresponds to the locus of 

points such that  
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We can construct the volume )(RVn  by adding infinitely thin spherical shells of radius . 

Rr 0 . In equation form, this reads: 
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It follows from the fundamental theorem of calculus that 
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where we have used eq. (2). Thus, the only remaining task is to compute nC . In order to 

obtain a better intuition on the meaning of nC , let us equate the two expressions we have 

for )(RVn , namely eq. (2) and eq. (3). In the latter, )(1 rSn  is 

determined by eq. (4). Thus, 
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In n-dimensions, using the relation 
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we get 
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In order to get the value of Cn, we consider a special function 
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Then we have 

 

 
  1

122

2

2

121 ...)...exp(......
2

n

nr

nn ddrrexxxdxdxdx  

 

Using the integral 
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we have 
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where we use the property of the Gamma function 
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The final result is 
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APPENDIX II Formula 
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This formula can be derived using the Mathematica. 
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