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We consider a system enclosed by an adiabatic wall. By an adiabatic wall we mean that
energy cannot be transferred through this wall. The system can be a gas, liquid, or solid.
For this system, the volume V', the number of particles &, and the total energy E are kept
constant. These variables represent the only possible constraints for this system. Other than
these constraints, we cannot place any restriction on the microscopic motions of the
molecules. Therefore, according to the principle of equal probability, each molecule can
do anything that is possible under these macroscopic constraints, and various microscopic
states should be realized with equal probability in thermal equilibrium. Among these
microscopic states, some states may be quite special, such that they will not be realized in
reality. However, except for a few such exceptional states, almost all microscopic states
will actually be realized as the state of the system changes temporally. Because of the vast
number of possible microscopic states, the exceptional states will practically never be
realized anyways; this is the conclusion of the previous chapter. We call this situation, where
every possible microscopic state is realized with equal probability, the micro-canonical
distribution. We write the total number of microscopic states allowed under the
macroscopic constraints as W(E, JoE, V,N). Therefore, the probability of each microscopic
state being realized is 1/W. Here we have allowed some uncertainty JF in the total energy,
and have counted microscopic states where the total energy is between £ and E + JE. Using
this W, we define the entropy S(E, oE, V,N) as follows:

S(E,OE,V,N) =k, InW(E,OoE,V,N)
Furthermore, we define the femperature of the system as follows: In this equation, the
partial differentiation is done keeping JE, N, and V fixed. As we shall see later, the

temperature thus defined coincides with the temperature defined by thermodynamics.

1. Approach I: Classical free particles (the number of particles, V)
The total number of states for the energy of the system between 0 and £
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The integral part corresponds to the volume of momentum space (3N dimension) with

radius VE . Using the formula of the volume of the hypersphere with radius JE , we get
the phase-space volume (see the Appendix for the calculation of the volume of

hypersphere)

N 3N/2
3N/2 1 4 T

Q(N,.E)=(2m) 3N—E3N/2
N Y 4
2
_(27sz)3N/2VN 1
- == -
h NUEESN L
2
where
3.z
') =—
27 2

The density of states is

O0Q(N,E) 1 vy V% 3N 1
D(N,E):—aE =( }’}’1)31\7/2 Nl h3N —3N TEZ E
1"(7+1)

The number of states between E and E + OF

W(N,E,0E) = D(N,E)SE
B 2 v /2 1 VN 72_3N/2 3_NE%£
=@M N ) E
T

3N VY 2;sz)3N/2 1 6E

=7
2 N r(37N+1)




The entropy S is defined by

S =k, InW(N,E,5E)
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where we use the Stirling’s relation

InN!'=NInN-N

and
lnF(3N ljzl (3NJ'——(I ﬂ—l)
2 2

In the limit of large N, we pick up only the terms which is proportional to N. The entropy
S can be written as
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From the relation
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we have
E= %kBT (energy partition law)

The Helmholtz free energy:

3N V. 3. E. 3., 4mmx 5
F=FE-ST=—k,T — Nk,T[In(—)+=In(—)+=1n +=
> s 5L [ (N) > (N) SRETE 2]

Since dF =—PdV —SdT , the pressure is obtained as

P= —[a—Fj _ Nk, T
v ), v

leading to the Boyle’s law
PV = Nk,T .

This can be rewritten as
PV = z E
3

2. From micro-canonical ensemble to canonical ensemble
First we consider the results from the micro-canonical ensemble for classical free
particles. We calculate the ratio
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Then we have
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We assume that the system is in a single state with the energy & . Then the probability of finding
the system in the state with the energy ¢ isgiven by
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which corresponds to the probability of canonical ensemble.



3. Derivation of Maxwell-Boltzmann distribution function from the micro-canonical
ensemble
We start with the number of states given by
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dimension) with radius 1/E —2’; . Using the formula of the volume of the hypersphere
m

with radius VE , we get the phase-space volume (see the Appendix for the calculation of
the volume of hypersphere)
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O (N.E) o

W,(N,E,JE) = aE
w1 g 3(N-1)
3(N= T — p N-1)-1
2m)? SE(E — 5!
p(2m) NN (3(N 1) 1) 2 ( )
2

We note that

2
h N! (37N 1)

Q)(N,.E)=(—7F—

6Q,(N,.E)

Dy(N,E) = °E

W,(N,E,SE) = D,(N,.E)SE

3N

_omy2 LV 72 3N NoE
-Gm® N 3N 2P E
: r(7+1)

_ﬂV_N(zﬂmE)% L &

2 N!

Now we calculate the ratio
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where

This form is exactly the same as that of the Maxwell-Boltzmann distribution function
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Clear["Global ="];
3
fIN1I ] := Log[Gamma[E N1 + 1” -

Log[Gamma[z N1 - %]] - z Log[NI1];

hl = Table[ {N1, Exp[f[N1]] // N},
{N1, 10000, 500000, 50000} ] ;

ListPlot[hl, PlotStyle -» {Thick, Red}]
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4. Application II: simple harmonics
The total number of states for the energy of the system between 0 and £

Suppose that
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The integral part corresponds to the volume of momentum space (6N dimension) with

radius VE . Using the formula of the volume of the hypersphere with radius JE , we get
the phase-space volume as
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The entropy S is
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In the limit of large N, we pick up only the terms which is proportional to N. The entropy
S can be written as
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From the relation

we have

E =3Nk,T = %NkBT + %NkBT

We note that the energy contribution from the kinetic energy is 3Nk, /2, while the energy

contribution from the potential energy is 3Nk,T'/2 ; energy partition relation.



5. Another method: classical simple harmonics
We consider a one-dimensional simple harmonics with mass m and angular frequency
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We now consider the f simple harmonics with the same angular frequency ®. The total
number of states for the energy of the system between 0 and £
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Using the formula (see the note below), we get
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We note that the energy contribution from the kinetic energy is fk,7/2, while the energy

contribution from the potential energy is fk,7"/2; energy partition relation.
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In the limit of f — oo, we have
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We show the proof of the formula.
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Clear["Global *"]; £f1 = UnitStep[El - x1 - x2] ;
Integrate[Integrate[fl, {x2, 0, ©}], {x1, 0, »}] //
Simplify
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f2 = UnitStep[El - x1 - x2 - x3] ;

Integrate[Integrate[Integrate[f2, {x3, 0, »}],
{x2, 0, o}], {x1, 0, ©}] // Simplify
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£3 = UnitStep[El - x1 - x2 - x3 - x4] ;

Integrate|
Integrate[Integrate[Integrate[£f3, {x4, 0, ©}],
{x3, 0, »}], {x2, 0, ®©}], {x1, 0, ©}] //
Simplify
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6. Photon
We consider the case when the energy dispersion of photons is given by

e(p)=dp|=cp

where p is the momentum of photon, and c is the velocity of light.
The total number of states for the energy of the system between 0 and £
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Note that the energy of one particle is given by
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The entropy S is
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Thus we have
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The energy F is obtained as
E =3Nk,T
The Helmbholtz free energy:
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Since dF =—-PdV —SdT , the pressure is obtained as
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which is different from the expression from the classical free particles.

APPENDIX-I Volume of n-dimensional supersphere

An n-dimensional hypersphere of radius R consists of the locus of points such that the
distance from the origin is less than or equal to R. A point in an n-dimensional Euclidean
space is designated by (x,,Xx,,...,x,) . In equation form, the hypersphere corresponds to the

set of points such that
xlz+sz+...+xn2 =R (1)

To compute the volume of this hypersphere, we simply integrate the infinitesimal volume
element

dV =dxdx,...dx,

over the region of n-dimensional (D) space indicated by Eq.(1). We need to calculate the
volume

dV =dxdx,..dx,

over the region of n-dimensional space indicated. We wish to compute this volume V (R).

Explicitly,
Vo(R) = [...| dxidx,..dx, O(R* =7 =x," —...=x, ) = C,R", )

The factor of R” is a consequence of dimensional analysis. The surface “area” of the n-
dimensional hypersphere defined by eq. (1) will be denoted by

Sn—l (R) .
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We can construct the volume ¥, (R) by adding infinitely thin spherical shells of radius .

0<r<R.Inequation form, this reads:
R
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It follows from the fundamental theorem of calculus that
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where we have used eq. (2). Thus, the only remaining task is to compute C,. In order to
obtain a better intuition on the meaning of C,, let us equate the two expressions we have
for V (R), namely eq. (2) and eq. (3). In the latter, S, _,(r) is

determined by eq. (4). Thus,
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In n-dimensions, using the relation
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In order to get the value of Cy, we consider a special function

F(X,%y500X,) =exp(—x,” —x," —...—x,) = exp(—r?)



Then we have
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where we use the property of the Gamma function
x[(x)=T(x+1)

The final result is
#?=c il |=cra+ly
2 \2 2

or

Cn: 7Z_n/2n
I'd+—
( 2)
n/2 pn
7" °R
V(R =—
ra+—
( 2)

n/2 pn-1 (n+1)/2 pn
Sf(R):nﬂ R ’ S(R):zﬂ- R
" ra+ ' rH

2 2

APPENDIX II Formula
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This formula can be derived using the Mathematica.
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£l =+/x1 4+ x2 ;

Integrate[Integrate[fl, {x2, 0, E1 - x1}],
{x1, 0, E1}] // Simplify
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£2 = 4/x1 4 x2 4/x3;
Integrate|
Integrate[Integrate[f2, {x3, 0, E1 - x1 - x2}],
{x2, 0, E1 -x1}], {%1, 0, E1}] // Simplify
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Integrate]

Integrate]

Integrate[Integrate[f3,
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{x2, 0, E1 -x1}], {x1, 0, E1}] // Simplify
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