Energy state of Binary Magnetic System
 Masatsugu Sei Suzuki
 Department of Physics
 SUNY at Binghamton

(Date: July 17, 2017)

1. Energy of the binary magnetic system

When the magnetic field is applied to this system, the energies of the different states are no longer all equal. The energy of a single magnet m with an external magnetic field B is,

$$
E=-\boldsymbol{m} \cdot \boldsymbol{B} \quad \text { (Zeeman energy) }
$$

For the model system of N elementary magnets, the total energy is

$$
\begin{aligned}
E & =-\boldsymbol{B} \cdot \sum_{i=1}^{N} \boldsymbol{m}_{i} \\
& =-B\left[m N_{\uparrow}+(-m) N_{\downarrow}\right] \\
& =-B m\left(N_{\uparrow}-N_{\downarrow}\right)
\end{aligned}
$$

Since $N_{\uparrow}-N_{\downarrow}=2 s$, we have

$$
E(s)=-2 s m B=-M B
$$

Here

$$
M=2 s m
$$

for the total magnetic moment 2 sm . We note that

$$
N_{\uparrow}+N_{\downarrow}=N, \quad N_{\uparrow}-N_{\downarrow}=2 s
$$

or

$$
\begin{aligned}
& N_{\uparrow}=\frac{1}{2}(N+2 s)=\frac{1}{2} N+s \\
& N_{\downarrow}=\frac{1}{2}(N-2 s)=\frac{1}{2} N-s
\end{aligned}
$$

Since $N_{\uparrow} \geq 0$ and $N_{\downarrow} \geq 0$, we have

$$
-\frac{1}{2} N \leq s \leq \frac{1}{2} N
$$

The total magnetic moment of the system of N magnets each of magntic moment m well be defined by M. The set of possible values is given by

$$
M=N m, \quad(N-2) m, \quad(N-4) m, \ldots,-N m .
$$

There are $(N+1)$ possible values of the total moment, whereas there are 2^{N} states. If $N=$ 10 , there are $2^{10}=1024$ states distributed among 11 different values of the total magnetic moment.

$$
(1+x)^{10}=1+10 x+45 x^{2}+120 x^{3}+210 x^{4}+252 x^{5}+210 x^{6}+120 x^{7}+45 x^{8}+10 x^{9}+x^{10}
$$

((Summary))

$$
\begin{aligned}
& E=-B m\left(N_{\uparrow}-N_{\downarrow}\right)=-M B=-2 s m B \\
& M=\left(N_{\uparrow}-N_{\downarrow}\right) m=2 s m \\
& 2 s=N_{\uparrow}-N_{\downarrow}
\end{aligned}
$$

2. Example-1: $\quad N=2$ case

$$
(1+x)^{2}=1+2 x+x^{2}
$$

(1) $\quad N_{\uparrow}=2, \quad N_{\downarrow}=0, \quad 2 s=2-0=2 \quad(s=1)$

There is one state.

$$
E=-2 m B
$$

(2) $\quad N_{\uparrow}=1$,
$N_{\downarrow}=1$,
$2 s=1-1=0$
($s=0$)

There are two states.
$E=0$

(3) $\quad N_{\uparrow}=0$
$N_{\downarrow}=2$,
$2 s=0-2=-2 \quad(s=-1)$

There is one state.
$E=2 m B$

((Energy and multiplicity))
total states $=2^{2}=4$ states
$1+2+1=4$ (the same as 2^{3})

Fig. Energy level and multiplicity for $N=2$
3. Example-2 $N=3$ case

$$
(1+x)^{3}=1+3 x+3 x^{2}+x^{3}
$$

(i) $\quad N_{\uparrow}=3, \quad N_{\downarrow}=0, \quad 2 s=3-0=3 \quad(s=3 / 2)$

$$
E=-3 m B
$$

There is one state.

(ii) $\quad N_{\uparrow}=2, \quad N_{\downarrow}=1, \quad 2 s=2-1=1 \quad(s=1 / 2)$

$$
E=-m B
$$

There are three states.

(iii) $\quad N_{\uparrow}=1, \quad N_{\downarrow}=2, \quad 2 s=1-2=-1 \quad(s=-1 / 2)$

$$
E=m B
$$

There are three states.

(iv) $\quad N_{\uparrow}=0, \quad N_{\downarrow}=3, \quad 2 s=0-3=-3 \quad(s=-3 / 2)$

$$
E=m B
$$

There is one state.

$$
\begin{array}{ll}
\hline & \frac{3}{2} m B(1) \\
\hdashline & \frac{1}{2} m B(3) \\
& -\frac{1}{2} m B(3) \\
& -\frac{3}{2} m B(1)
\end{array}
$$

4. Example-3 $N=4$ case

$$
(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}
$$

(i) $\quad N_{\uparrow}=4, \quad N_{\downarrow}=0, \quad 2 s=4-0=4 \quad(s=2)$

$$
E=-4 m B
$$

There is one state.

(ii) $\quad N_{\uparrow}=3, \quad N_{\downarrow}=1, \quad 2 s=3-1=2 \quad(s=1)$

$$
E=-2 m B
$$

There are 4 states.

There are 6 states.
$E=0$

(iv) $\quad N_{\uparrow}=1, \quad N_{\downarrow}=3, \quad 2 s=1-3=-2 \quad(s=-1)$

$$
E=2 m B
$$

There are 4 states.

(v) $\quad N_{\uparrow}=0, \quad N_{\downarrow}=4, \quad 2 s=0-4=-4 \quad(s=-2)$
$E=4 m B$

There is one states.

((Energy and multiplicity))

total states $=2^{4}=16$ states
$1+4+6+4+1=16$ (the same as 2^{4})
$4 m B(1)$
$2 m B(4)$

0 (6)
$-2 m B(4)$
$-4 m B(1)$

5. State of model system

We use the following simple notation for a single state of the system of N sites. The magnetic-moment up-state at the site i is denoted by x_{i}, and the magnetic moment downstate at the site j is denoted by y_{j}.

$\begin{array}{lllllllllll}x_{1} & y_{2} & x_{3} & y_{4} & y_{5} & x_{6} & y_{7} & x_{8} & y_{9} & x_{10} & x_{11}\end{array}$

Every distinct state of the system is contained in a symbolic product of N factors,

$$
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)\left(x_{4}+y_{4}\right) \ldots \ldots .\left(x_{N-1}+y_{N-1}\right)\left(x_{N}+y_{N}\right)
$$

which is called a generating function. It generates the states of the system. The generating function for the states of a system of $N=2$ is given by

$$
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)=x_{1} x_{2}+x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2} .
$$

for the $N=2$ system. From this we have

For $N=3$ we have

$$
\begin{aligned}
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)= & \left(x_{1} x_{2}+x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2}\right)\left(x_{3}+y_{3}\right) \\
& =x_{1} x_{2} x_{3} \\
& +x_{1} x_{2} y_{3}+x_{1} y_{2} x_{3}+y_{1} x_{2} x_{3} \\
& +x_{1} y_{2} y_{3}+y_{1} x_{2} y_{3}+y_{1} y_{2} x_{3} \\
& +y_{1} y_{2} y_{3}
\end{aligned}
$$

In summary we have

$x_{1} x_{2} x_{3}$	M	$=3 m$ state
$x_{1} x_{2} y_{3}+x_{1} y_{2} x_{3}+y_{1} x_{2} x_{3}$	(multiplicity 1)	
$x_{1} y_{2} y_{3}+y_{1} x_{2} y_{3}+y_{1} y_{2} x_{3}$	$M=m$ state	(multiplicity 3)
$y_{1} y_{2} y_{3}$	$M=-m$ state	(multiplicity 3)
	$M=-3 m$ state	(multiplicity 1)

For $N=4$ we have

$$
\begin{aligned}
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)\left(x_{4}+y_{4}\right) & =\left(x_{1} x_{2} x_{3}+x_{1} x_{2} y_{3}+x_{1} y_{2} x_{3}+y_{1} x_{2} x_{3}\right. \\
& \left.+x_{1} y_{2} y_{3}+y_{1} x_{2} y_{3}+y_{1} y_{2} x_{3}+y_{1} y_{2} y_{3}\right)\left(x_{4}+y_{4}\right) \\
& =x_{1} x_{2} x_{3} x_{4} \\
& +x_{1} x_{2} x_{3} y_{4}+x_{1} x_{2} y_{3} x_{4}+x_{1} y_{2} x_{3} x_{4}+y_{1} x_{2} x_{3} x_{4} \\
& +x_{1} x_{2} y_{3} y_{4}+x_{1} y_{2} x_{3} y_{4}+y_{1} x_{2} x_{3} y_{4}+x_{1} y_{2} y_{3} x_{4}+y_{1} x_{2} y_{3} x_{4}+y_{1} y_{2} x_{3} x_{4} \\
& +x_{1} y_{2} y_{3} y_{4}+y_{1} x_{2} y_{3} y_{4}+y_{1} y_{2} x_{3} y_{4}+y_{1} y_{2} y_{3} x_{4} \\
& +y_{1} y_{2} y_{3} y_{4}
\end{aligned}
$$

In summary we have

$x_{1} x_{2} x_{3} x_{4}$	$M=4 m$ state (multiplicity
$1)$	
$x_{1} x_{2} x_{3} y_{4}+x_{1} x_{2} y_{3} x_{4}+x_{1} y_{2} x_{3} x_{4}+y_{1} x_{2} x_{3} x_{4}$	$M=2 m$ state (multiplicity

$x_{1} x_{2} y_{3} y_{4}+x_{1} y_{2} x_{3} y_{4}+y_{1} x_{2} x_{3} y_{4}+x_{1} y_{2} y_{3} x_{4}+y_{1} x_{2} y_{3} x_{4}+y_{1} y_{2} x_{3} x_{4}$

$$
M=0 \text { state (multiplicity }
$$

6)

$x_{1} y_{2} y_{3} y_{4}+y_{1} x_{2} y_{3} y_{4}+y_{1} y_{2} x_{3} y_{4}+y_{1} y_{2} y_{3} x_{4}$
$y_{1} y_{2} y_{3} y_{4}$
$M=-2 m$ state
(multiplicity 4)
$M=-4 m$ state
(multiplicity 1)

In order to find the expression for the multiplicity, we may drop the site label.

$$
\begin{equation*}
(x+y)^{N}=\sum_{t=0}^{N} \frac{N!}{(N-t)!t!} x^{N-t} y^{t} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{\uparrow}=N-t, \quad N_{\downarrow}=t \\
& N_{\uparrow}-N_{\downarrow}=N-2 t=2 s
\end{aligned}
$$

Thus we get

$$
t=N_{\downarrow}=\frac{1}{2} N-s, \quad N-t=N_{\uparrow}=\frac{1}{2} N+s
$$

Equation (1) can be rewritten as

$$
(x+y)^{N}=\sum_{s=-N / 2}^{N / 2} \frac{N!}{\left(\frac{1}{2} N+s\right)!\left(\frac{1}{2} N-s\right)!} x^{\frac{1}{2} N+s} y^{\frac{1}{2} N-s}
$$

The coefficient of the term in $x^{\frac{1}{2} N+s} y^{\frac{1}{2} N-s}$ is the number of states where the net magnetic moment is having $2 \operatorname{sm}\left[=m\left(N_{\uparrow}-N_{\downarrow}\right)\right]$. We denote the number of states in this class by

$$
g(N, s)=\frac{N!}{\left(\frac{1}{2} N+s\right)!\left(\frac{1}{2} N-s\right)!}=\frac{N!}{N_{\uparrow}!N_{\downarrow}!}
$$

which is called the multiplicity function. In the expression of

$$
(x+y)^{N}=\sum_{s=-N / 2}^{N / 2} g(N, s) x^{\frac{1}{2} N+s} y^{\frac{1}{2} N-s}
$$

we put $x=y=1$. Thus we have the total number states

$$
2^{N}=\sum_{s=-N / 2}^{N / 2} g(N, s)
$$

6. Sharpness of the multiplicity function

Using the Stirling formula

$$
n!=n(\ln n-1)+\frac{1}{2} \ln (2 \pi n)
$$

for $n \gg 1$, we find the approximation for the multiplicity function,

$$
\begin{aligned}
\ln g(N, s) & =\ln N!-\ln \left(\frac{1}{2} N+s\right)!-\left(\frac{1}{2} N-s\right)! \\
& =\frac{1}{2} \ln \left(\frac{1}{2 \pi N}\right)+N \ln 2-\frac{2 s^{2}}{N}+\frac{1}{2} \ln 2^{2} \\
& =\ln \left[2^{N}\left(\frac{2}{\pi N}\right)^{1 / 2}\right]-\frac{2 s^{2}}{N}
\end{aligned}
$$

or

$$
g(N, s)=g(N, 0) \exp \left[-\frac{2 s^{2}}{N}\right]
$$

with

$$
g(N, 0)=2^{N}\left(\frac{2}{\pi N}\right)^{1 / 2}
$$

$g(N, s)$ can be expressed by the Gaussian distribution function as

$$
2^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{s^{2}}{2 \sigma^{2}}\right]
$$

where

$$
\begin{aligned}
& \sigma=\frac{\sqrt{N}}{2} \\
& g(N, 0)=2^{N}\left(\frac{2}{\pi N}\right)^{1 / 2}=2^{N} \frac{1}{\sqrt{2 \pi} \sigma} .
\end{aligned}
$$

We note that

$$
P(s)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{s^{2}}{2 \sigma^{2}}\right]
$$

is the Gaussian distribution function and

$$
\int P(s) d s=\int d s \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{s^{2}}{2 \sigma^{2}}\right]=1
$$

The average:

$$
\begin{aligned}
& \langle s\rangle=\int s P(s)=0 \\
& \left\langle s^{2}\right\rangle=\int s^{2} P(s)=\sigma^{2}
\end{aligned}
$$

The fluctuation
$\sqrt{\left\langle(\Delta s)^{2}\right\rangle}=\sqrt{\left\langle s^{2}\right\rangle-\langle s\rangle^{2}}=\sqrt{\sigma^{2}}=\frac{\sqrt{N}}{2}$

