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1. Energy of the binary magnetic system 

 

 
 

 
 

When the magnetic field is applied to this system, the energies of the different states are 

no longer all equal. The energy of a single magnet m with an external magnetic field B is, 

 

Bm E   (Zeeman energy) 

 

For the model system of N elementary magnets, the total energy is 

 

)(

])([

1











 

NNBm

NmmNB

E
N

i

imB

 

 

Since sNN 2


, we have 
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Here 
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for the total magnetic moment 2sm. We note that 
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The total magnetic moment of the system of N magnets each of magntic moment m well 

be defined by M. The set of possible values is given by 

 

NmM  , mN )2(  , mN )4(  ,…, Nm . 

 

There are )1( N  possible values of the total moment, whereas there are N2  states. If N = 

10, there are 210 = 1024 states distributed among 11 different values of the total magnetic 

moment. 
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((Summary)) 
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2. Example-1:  N = 2 case 

 
22 21)1( xxx   

 

(1) 2

N , 0


N , 2022 s   (s = 1) 



There is one state. 

mBE 2  

 

 
 

(2) 1

N , 1


N , 0112 s   (s = 0) 

There are two states. 

0E  

 

 
 

 
 

(3) 0

N , 2


N , 2202 s   (s = -1) 

There is one state. 

mBE 2  

 

 
 

((Energy and multiplicity)) 



 

total states = 22 = 4 states 

1+2+1 = 4 (the same as 23) 

 

 
 

Fig. Energy level and multiplicity for N = 2  

 

3. Example-2  N = 3 case 

 
323 331)1( xxxx   

 

(i) 3

N , 0


N , 3032 s   (s = 3/2) 

 

mBE 3  

 

There is one state. 

 

 
 

(ii) 2

N , 1


N , 1122 s   (s = 1/2) 

 

mBE   
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There are three states. 

 

 

 

 
 

(iii) 1

N , 2


N , 1212 s   (s = -1/2) 

 

mBE   

 

There are three states. 

 

 



 
 

 
 

 

(iv) 0

N , 3


N , 3302 s   (s = -3/2) 

 

mBE   

 

There is one state. 

 

 

 
 



 
 

4. Example-3  N = 4 case 

 
4324 4641)1( xxxxx   

 

(i) 4

N , 0


N , 4042 s   (s = 2) 

 

mBE 4  

 

There is one state. 

 
 

(ii) 3

N , 1


N , 2132 s   (s = 1) 

 

mBE 2  

 

There are 4 states. 
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(iii) 2

N , 2


N , 0222 s   (s = 0) 

 

There are 6 states. 
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(iv) 1

N , 3


N , 2312 s   (s = -1) 

 

mBE 2  

 

There are 4 states. 

 

 

 

 

 
 

(v) 0

N , 4


N , 4402 s   (s = -2) 

 

mBE 4  

 

There is one states. 



 

 
 

((Energy and multiplicity)) 

 

total states = 24 = 16 states 

1+4+6+4+1 = 16 (the same as 24) 

 

 
 

5. State of model system 

We use the following simple notation for a single state of the system of N sites. The 

magnetic-moment up-state at the site i is denoted by ix , and the magnetic moment down-

state at the site j is denoted by yj.  
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Every distinct state of the system is contained in a symbolic product of N factors, 

 

))().......()()()(( 1144332211 NNNN yxyxyxyxyxyx    

 

which is called a generating function. It generates the states of the system. The generating 

function for the states of a system of N = 2 is given by 

 

212121212211 ))(( yyxyyxxxyxyx  . 

 

for the N = 2 system. From this we have 

 

 21xx  (state) with the multiplicity (1) 

 

 21yx  (state) with the multiplicity (1) 

 

 21xy  (state) with the multiplicity (1) 

 

 21yy  (state) with the multiplicity (1) 

 

For N = 3 we have 

 

x1 y2 x3 y4 y5 x6 y7 x8 y9 x10 x11
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In summary we have 

 

321 xxx  mM 3  state  (multiplicity 1) 

 

321321321 xxyxyxyxx   mM   state  (multiplicity 3) 

 

321321321 xyyyxyyyx   mM   state  (multiplicity 3) 

 

321 yyy  mM 3  state  (multiplicity 1) 

 

For N = 4 we have 
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In summary we have 

 

4321 xxxx  mM 4  state (multiplicity 

1) 

 

4321432143214321 xxxyxxyxxyxxyxxx   mM 2  state  (multiplicity 

4) 

 

432143214321432143214321 xxyyxyxyxyyxyxxyyxyxyyxx   



 0M  state (multiplicity 

6) 

 

4321432143214321 xyyyyxyyyyxyyyyx   mM 2  state  

(multiplicity 4) 

 

4321 yyyy  mM 4  state  

(multiplicity 1) 

 

In order to find the expression for the multiplicity, we may drop the site label. 
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where 
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Thus we get 
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Equation (1) can be rewritten as 
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The coefficient of the term in 
sNsN
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 is the number of states where the net magnetic 

moment is having )]([ 2


 NNmsm . We denote the number of states in this class by 

 

!!

!

)!
2

1
()!

2

1
(

!
),(







NN

N

sNsN

N
sNg  

 



which is called the multiplicity function. In the expression of 
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we put 1 yx . Thus we have the total number states 
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6. Sharpness of the multiplicity function 

Using the Stirling formula 
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for 1n , we find the approximation for the multiplicity function, 
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or 
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with 
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),( sNg  can be expressed by the Gaussian distribution function as 
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We note that 
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is the Gaussian distribution function and 
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The average: 
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The fluctuation 
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