Energy state of Binary Magnetic System

Masatsugu Sei Suzuki Department of Physics SUNY at Binghamton (Date: July 17, 2017)

1. Energy of the binary magnetic system

When the magnetic field is applied to this system, the energies of the different states are no longer all equal. The energy of a single magnet m with an external magnetic field B is,

$$E = -\mathbf{m} \cdot \mathbf{B}$$
 (Zeeman energy)

For the model system of N elementary magnets, the total energy is

$$E = -\mathbf{B} \cdot \sum_{i=1}^{N} \mathbf{m}_{i}$$

$$= -B[mN_{\uparrow} + (-m)N_{\downarrow}]$$

$$= -Bm(N_{\uparrow} - N_{\downarrow})$$

Since $N_{\uparrow} - N_{\downarrow} = 2s$, we have

$$E(s) = -2smB = -MB$$

Here

$$M = 2sm$$

for the total magnetic moment 2sm. We note that

$$N_{\uparrow} + N_{\downarrow} = N$$
, $N_{\uparrow} - N_{\downarrow} = 2s$

or

$$N_{\uparrow} = \frac{1}{2}(N+2s) = \frac{1}{2}N + s$$

$$N_{\downarrow} = \frac{1}{2}(N - 2s) = \frac{1}{2}N - s$$

Since $N_{\uparrow} \ge 0$ and $N_{\downarrow} \ge 0$, we have

$$-\frac{1}{2}N \le s \le \frac{1}{2}N$$

The total magnetic moment of the system of N magnets each of magnitic moment m well be defined by M. The set of possible values is given by

$$M = Nm$$
, $(N-2)m$, $(N-4)m$,..., $-Nm$.

There are (N+1) possible values of the total moment, whereas there are 2^N states. If N=10, there are $2^{10}=1024$ states distributed among 11 different values of the total magnetic moment.

$$(1+x)^{10} = 1 + 10x + 45x^2 + 120x^3 + 210x^4 + 252x^5 + 210x^6 + 120x^7 + 45x^8 + 10x^9 + x^{10}$$

((Summary))

$$E = -Bm(N_{\uparrow} - N_{\downarrow}) = -MB = -2smB$$

$$M = (N_{\uparrow} - N_{\downarrow})m = 2sm$$

$$2s = N_{\uparrow} - N_{\downarrow}$$

2. Example-1: N = 2 case

$$(1+x)^2 = 1 + 2x + x^2$$

(1)
$$N_{\uparrow} = 2$$
, $N_{\downarrow} = 0$, $2s = 2 - 0 = 2$ $(s = 1)$

There is one state.

$$E = -2mB$$

(2)
$$N_{\uparrow} = 1$$
, $N_{\downarrow} = 1$, $2s = 1 - 1 = 0$ $(s = 0)$

There are two states.

$$E = 0$$

(3)
$$N_{\uparrow} = 0$$
, $N_{\downarrow} = 2$, $2s = 0 - 2 = -2$ $(s = -1)$

There is one state.

$$E = 2mB$$

((Energy and multiplicity))

total states =
$$2^2 = 4$$
 states
1+2+1 = 4 (the same as 2^3)

Fig. Energy level and multiplicity for N = 2

3. Example-2 N=3 case

$$(1+x)^3 = 1+3x+3x^2+x^3$$

(i)
$$N_{\uparrow} = 3$$
, $N_{\downarrow} = 0$, $2s = 3 - 0 = 3$ $(s = 3/2)$
$$E = -3mB$$

There is one state.

(ii)
$$N_{\uparrow}=2$$
, $N_{\downarrow}=1$, $2s=2-1=1$ $(s=1/2)$
$$E=-mB$$

There are three states.

(iii)
$$N_{\uparrow} = 1$$
, $N_{\downarrow} = 2$, $2s = 1 - 2 = -1$ $(s = -1/2)$

E = mB

There are three states.

(iv)
$$N_{\uparrow} = 0$$
, $N_{\downarrow} = 3$, $2s = 0 - 3 = -3$ $(s = -3/2)$ $E = mB$

There is one state.

$$\frac{1}{2}mB(3)$$

$$-\frac{1}{2}mB(3)$$

$$-\frac{3}{2}mB(1)$$

4. Example-3 N = 4 case

$$(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$$

(i)
$$N_{\uparrow} = 4$$
, $N_{\downarrow} = 0$, $2s = 4 - 0 = 4$ $(s = 2)$

$$E = -4mB$$

There is one state.

(ii)
$$N_{\uparrow} = 3$$
, $N_{\downarrow} = 1$, $2s = 3 - 1 = 2$ $(s = 1)$

$$E = -2mB$$

There are 4 states.

(iii)
$$N_{\uparrow} = 2$$
, $N_{\downarrow} = 2$, $2s = 2 - 2 = 0$ $(s = 0)$

There are 6 states.

$$E = 0$$

(iv)
$$N_{\uparrow} = 1$$
, $N_{\downarrow} = 3$, $2s = 1 - 3 = -2$ $(s = -1)$ $E = 2mB$

There are 4 states.

(v)
$$N_{\uparrow} = 0$$
, $N_{\downarrow} = 4$, $2s = 0 - 4 = -4$ $(s = -2)$ $E = 4mB$

There is one states.

((Energy and multiplicity))

total states = 2^4 = 16 states 1+4+6+4+1 = 16 (the same as 2^4)

______ 2mB (4)

0 (6)

-4mB (1)

5. State of model system

We use the following simple notation for a single state of the system of N sites. The magnetic-moment up-state at the site i is denoted by x_i , and the magnetic moment down-state at the site j is denoted by y_j .

Every distinct state of the system is contained in a symbolic product of N factors,

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3)(x_4 + y_4)....(x_{N-1} + y_{N-1})(x_N + y_N)$$

which is called a generating function. It generates the states of the system. The generating function for the states of a system of N = 2 is given by

$$(x_1 + y_1)(x_2 + y_2) = x_1x_2 + x_1y_2 + y_1x_2 + y_1y_2$$
.

for the N = 2 system. From this we have

For N = 3 we have

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3) = (x_1x_2 + x_1y_2 + y_1x_2 + y_1y_2)(x_3 + y_3)$$

$$= x_1x_2x_3$$

$$+ x_1x_2y_3 + x_1y_2x_3 + y_1x_2x_3$$

$$+ x_1y_2y_3 + y_1x_2y_3 + y_1y_2x_3$$

$$+ y_1y_2y_3$$

In summary we have

$$x_1x_2x_3$$
 $M = 3m$ state (multiplicity 1)
 $x_1x_2y_3 + x_1y_2x_3 + y_1x_2x_3$ $M = m$ state (multiplicity 3)
 $x_1y_2y_3 + y_1x_2y_3 + y_1y_2x_3$ $M = -m$ state (multiplicity 3)
 $y_1y_2y_3$ $M = -3m$ state (multiplicity 1)

For N = 4 we have

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3)(x_4 + y_4) = (x_1x_2x_3 + x_1x_2y_3 + x_1y_2x_3 + y_1x_2x_3 + x_1y_2y_3 + y_1x_2y_3 + y_1y_2x_3 + y_1y_2y_3)(x_4 + y_4) = x_1x_2x_3x_4 + x_1x_2x_3y_4 + x_1x_2y_3x_4 + x_1y_2x_3x_4 + y_1x_2x_3x_4 + x_1x_2y_3y_4 + x_1y_2x_3y_4 + y_1x_2x_3y_4 + x_1y_2y_3x_4 + y_1x_2y_3x_4 + y_1y_2x_3x_4 + x_1y_2y_3y_4 + y_1x_2y_3y_4 + y_1y_2x_3y_4 + y_1y_2y_3x_4 + y_1y_2y_3y_4$$

In summary we have

$$x_1x_2x_3x_4$$
 $M = 4m$ state (multiplicity 1)
$$x_1x_2x_3y_4 + x_1x_2y_3x_4 + x_1y_2x_3x_4 + y_1x_2x_3x_4$$
 $M = 2m$ state (multiplicity 4)
$$x_1x_2y_3y_4 + x_1y_2x_3y_4 + y_1x_2x_3y_4 + y_1y_2y_3x_4 + y_1y_2x_3x_4$$

$$M = 0 \text{ state (multiplicity 6)}$$

$$x_1y_2y_3y_4 + y_1x_2y_3y_4 + y_1y_2x_3y_4 + y_1y_2y_3x_4$$

$$M = -2m \text{ state (multiplicity 4)}$$

$$y_1y_2y_3y_4$$

$$M = -4m \text{ state (multiplicity 1)}$$

In order to find the expression for the multiplicity, we may drop the site label.

$$(x+y)^{N} = \sum_{t=0}^{N} \frac{N!}{(N-t)!t!} x^{N-t} y^{t}$$
(1)

where

$$N_{\uparrow} = N - t$$
, $N_{\downarrow} = t$

$$N_{\uparrow} - N_{\downarrow} = N - 2t = 2s$$

Thus we get

$$t = N_{\downarrow} = \frac{1}{2}N - s$$
, $N - t = N_{\uparrow} = \frac{1}{2}N + s$

Equation (1) can be rewritten as

$$(x+y)^{N} = \sum_{s=-N/2}^{N/2} \frac{N!}{(\frac{1}{2}N+s)!(\frac{1}{2}N-s)!} x^{\frac{1}{2}N+s} y^{\frac{1}{2}N-s}$$

The coefficient of the term in $x^{\frac{1}{2}N+s}y^{\frac{1}{2}N-s}$ is the number of states where the net magnetic moment is having $2sm[=m(N_{\uparrow}-N_{\downarrow})]$. We denote the number of states in this class by

$$g(N,s) = \frac{N!}{(\frac{1}{2}N+s)!(\frac{1}{2}N-s)!} = \frac{N!}{N_{\uparrow}!N_{\downarrow}!}$$

which is called the multiplicity function. In the expression of

$$(x+y)^{N} = \sum_{s=-N/2}^{N/2} g(N,s) x^{\frac{1}{2}N+s} y^{\frac{1}{2}N-s}$$

we put x = y = 1. Thus we have the total number states

$$2^{N} = \sum_{s=-N/2}^{N/2} g(N,s)$$

6. Sharpness of the multiplicity function

Using the Stirling formula

$$n! = n(\ln n - 1) + \frac{1}{2}\ln(2\pi n)$$

for n >> 1, we find the approximation for the multiplicity function,

$$\ln g(N,s) = \ln N! - \ln(\frac{1}{2}N + s)! - (\frac{1}{2}N - s)!$$

$$= \frac{1}{2}\ln(\frac{1}{2\pi N}) + N\ln 2 - \frac{2s^2}{N} + \frac{1}{2}\ln 2^2$$

$$= \ln[2^N \left(\frac{2}{\pi N}\right)^{1/2}] - \frac{2s^2}{N}$$

or

$$g(N,s) = g(N,0) \exp[-\frac{2s^2}{N}]$$

with

$$g(N,0) = 2^N \left(\frac{2}{\pi N}\right)^{1/2}$$

g(N,s) can be expressed by the Gaussian distribution function as

$$2^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{s^{2}}{2\sigma^{2}}\right]$$

where

$$\sigma = \frac{\sqrt{N}}{2}$$

$$g(N,0) = 2^N \left(\frac{2}{\pi N}\right)^{1/2} = 2^N \frac{1}{\sqrt{2\pi}\sigma}.$$

We note that

$$P(s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{s^2}{2\sigma^2}\right]$$

is the Gaussian distribution function and

$$\int P(s)ds = \int ds \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{s^2}{2\sigma^2}\right] = 1$$

The average:

$$\langle s \rangle = \int sP(s) = 0$$

$$\langle s^2 \rangle = \int s^2 P(s) = \sigma^2$$

The fluctuation

$$\sqrt{\langle (\Delta s)^2 \rangle} = \sqrt{\langle s^2 \rangle - \langle s \rangle^2} = \sqrt{\sigma^2} = \frac{\sqrt{N}}{2}$$