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We consider N spins with spin 1/2 in the presence of a magnetic field. There are two spin state
with the up-state (the magnetic moment m ) and the down-state (the energy —m) for each spin.

We discuss the number of the spin arrangement for N spins.

1. Introduction
We use the following simple notation for a single state of the system of N sites.

Every distinct state of the system is contained in a symbolic product of N factors.
(Tl + \Ll)(TZ + ‘l’z)(T3 + ‘l’3) """ (,rzv + ‘LN)

which is called a generating function. It generates the state of the system. The multiplication rule
is defined by

M+, +) =T+ T+ T, +4 4,

((Note))
It is convenient to expand

(T ard, )T, av L, By =TT, >+ (T, +, 1 )ab+ 4 1, b
Instead of (T, + ¥ )(T, +4,) =TT, + T, +3, T, +14,.

The coefficient of a* is T,
The coefticient of ab is T3, +4,T)
The coefficient of 5 is 1,



Tia Toa

Lib 4ob

Fig.  There are two possibilities: spin up state and spin down state.

We use the following notation
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For a system of two elementary magnets, we obtain the four possible states,
T, () M =2m 25 =2
RN () M=0 25 =0

4, (D) M=-2m  2s=-2



The sum is not a state but is a way of listing the four possible states of the system
The generating function for the states of a system of three magnets.

T+, )M +4)

or
UARCY M=3m  25=3
T, LT LT 0) M=m 2s=1
T, N LT 0) M=-m 25 =-1
4 () M=-3m 2s=-3

There are 2° =1+3+3+1=238 states.

—4<2s5<4, §=2,1,0,-1,-2

There are 2* =16 states.
(T +34), +4)@ + 3T, +1)
T, (D M =4m
LS O e R G O A 7)) M =2m
T, L, LT, LT, M =0m
LT, AN, 6

VU SURUNE AR SR MR M =—2m



44, M=-4m  2s=-4
Note that
24=1+4+6+4+1 = 16

In the presence of magnetic field B, the up-state has an energy —mB , while the down-state has
an energy mB . The total energy E is

=-mB(N, - N|)
=—-2mBs
=-MB
where
M =2sm
with
- ﬁ <s< ﬁ
2 2
2. Enumeration of states and the multiplicity function

We use the word “spin” as a shorthand for elementary magnet. We assume that N is an even
number. We need a mathematical expansion for the number of states with

where s is an integer.
which is called the “spin excess.”

The total magnetization M is given by



=2ms
where
S:_ﬂ,_ﬁ+1’_ﬂ+2’...’ﬁ_l,ﬂj
2 2 2 2 2

We may drop the site labels when we are interested in how many of the magnets in a state are up
or down, and not in which particular sites have magnets up or down.

T+ =+ )Y

where x =T and y={.

v N/2 N' NN
x+)"'= Y "y
o (N V)!

1 1
_ N/2 1 Nll xENJrsyENfS
=N2(ZN +5)! (=N —s)!
G "G )
1 1
_ N/2 N' xENJrSyEN—s

s==N/2 (;N+s)! (;N—s)!

where

Note that

C n! N!
"o (n=r)lr! N,IN|!

where



1 1
—N+s | —N-s
The coefficient of the term in T2 12 is the number of states having

N¢=N—r=%+s, (magnets up)
N
N =r= e S. (magnets down)

This class of states has spin excess N, — N, =2s and net magnetic moment 2sm . We denote the

number of states in this class by g(N,s)

NI N
N+s)!(;N—s)! (NHN)!

g(N,s)= I
G

We call g(N,s) the multiplicity function. When a magnetic field is applied to the spin systems,

state of different values of S have different values of the energy, so that our g is equal to the
multiplicity of an energy level in a magnetic field.
Since

N/2 lN+S lN—S
x+»)¥= D gN,9)x?* 2

s=—N/2

we have the total number states for x = y =1

N/2
2¥ = > g(N.s)
s=—N/2
3. Stirling’s formula (I)

The integral formula provides one such convenient expression, namely



nl=|x"e “dx

S ey 8

Note the Laplace transformation,

n!

n+l

It"e‘“dt -
0 R)

Consider the integrand F' = x"e™*, when n 1s large. Then x" is a rapidly increasing function of x,

X

while e is a rapidly decreasing function of x. Hence F' is a function which exhibits a sharp

maximum for some value x = x* = n, and falls off rapidly for x appreciably removed from x = x".

05¢
04+

0.3r

0.1r

F(x)=x"e™,
F'(x)==x""e ™ (x—n)

It is equivalent and more convenient to work with In 7 . Since In F is a monotonically increasing
function of F, a maximum in In ¥ corresponds to a maximum of F.



X)=In(x"e ™) (n = 100)
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To find this maximum, put
dInF din F(x) _,
| _.=0 or * =
dx dx

or

Hence

d* (nlnx"—x") = n* -1=0
X X

The second derivative is negative at x = x" .

d*InF(x) d F()
i S dx F(x)
_ F'"(xX)F(x)=[F'()P
[F(x))
_F'(x)
COF(X)




or
—
Then the function In F can be described in the neighborhood of x = x”,

dnFG) 1 d I FR)
* | %2

InF(x)=InF(x)+(x—x)
dx 2! dx

=InF(x")- (x—x")?

2
20 .
x

or

F(x)= F(xYexpl- 201 (r-x)]

Gaussian distribution centered at x = x” = n with the width 2+/21In20_ =2.35480,

In2=

1 *\2
X—X
2%2( )]

XX 212 =+21n2 = +1.17741.
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Then the integral becomes
nl= IF (x)dx
0

F(x")exp[-

Q
O —y 8

2
20 .
X

F(x)|exp[-
( ){ pl 70

=~2ro .F (x")
=2mF(x")
=+2mn"e™"

for n>>1.

The Stirling’s formula

It can be also be written in the form

(x —x")*]dx

(x—x")*]dx




mM=an—D+%QO0

1 1
=(n+—)lnn—-n+—In2x
( 2) P (27)

~n(lnn-1)

((Example))
n Log[n !] (n +%)Log[n]—n+% Log[2 7]
10 15.1044 15.09061
20 42 .3356 42 .3315
30 74.6582 74.6555
40 110.321 110.319
50 148.478 148.476
60 188.628 188.627
70 230.439 230.438
80 273.673 273.672
90 318.153 318.152
100 363.739 363.739
n Log[n !] (n +%)Log[n]—n+%Log[2 adl
100 363.739 363.739
200 863.232 863.232
300 1414.91 1414.91
400 2000.5 2000.5
500 2611.33 2611.33
600 3242 .28 3242.28
700 3889.95 3889.95
800 4551.95 4551.95
900 5226.48 5226.48
1000 5912.13 5912.13




n Log[n !] (n +%)Log[n]—n+%Log[2 adl

1000 5912.13 5912.13
2000 13206.5 13206.5
3000 21024. 21024.

4000 29181.3 29181.3
5000 37591.1 37591.1
6000 46202 .4 46202.4
7000 54 981. 54 981.

8000 63903. ©63903.

9000 72950.3 72950.3
10000 82108.9 82108.9

4. Stirling’s formula (IT)
H.J.W. Muller-Kristen, Basic of Statistical Physics (World Scientific, 2010).
We start with

which is equal to the area under the staircase in this Fig.
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Thus, to a good approximation:
In(n!) = [ Inxdx = [xInx—x] =n(inn-1)
1

where 7 is large.

5. Sharpness of the multiplicity function
We show that for a very large system, the function g(N,s) is peaked very sharply about s = 0.

using the Stirling’s formula,

N
N,IN !
= In(N!) - In(N, 1) — In(N_!)

In[g(N,s)]=1In

~(N+1)InN—N+Lin@27)
2 2
1 1
1 1
—(N¢+5)lnN¢+N¢—Eln(27z)
1 1 1 1
Z(N-FE)IHN—(A% +5)1HN¢ _(Nl +E)11’IN¢ —Eln(27z)
1 1 1 1
Z(N¢ +N¢ +5)1HN—(NT +E)11’INT _(N¢ +5)1HN‘L —Eln(27z)
1 1 1 1 1 1
= {(V; )+ (V; +9) =N = (N, + )N, (N, +2)In N, = In27)
1 1 1 N 1 N
— ()~ (N, + ) It (N, + )k
2 M) N F I = (N Iy
We use the formula

2 3
X

X
Inl+x)=x——+—+---
(1+x) 713

for |x| <<1. Using this, we get



lN+s

lnﬁ = ln(z—)
N N

- 1n[%(1 ' %)]

= —ln2+ln(l+§)
N

2
S ST
N 2\ N

Similarly,

lN—s

lnﬁ = ln(—2 )
N N

- 1n[%(1 - %)]

2s
=—In2+In(1-—
( N)

2
—om2- 2128
N 2\N

On substitution, we obtain

11 1N N
I[2(N.5)] =~ In(——) = (N+ + =) In—L — (N, +~)In—*
nfg(N.9)] =7 In() = (Ny ) In—g- = (N + )0

1.1 1 2s 1(2sY) 1 2s 1(2sY)
=—In(——) = (N, + ) [-In2+ = —=| 22 | |=(N, +-)[-In2—==——| =2
2n(27zN) (Vr 2)[ TN 2(1\7)] N, 2)[ TN Z(Nj]

1 1 2s 1
=—In(——)+ (N, +N, +D)In2——(N. + =
2y N N+ D T

1. 1(2sY 1 1
_NJ’_E)—’_E(WJ (NT+E+N‘L+E)

1 1 45*  2s°
=—In(—)+(N+DIn2——+="(N +1
2 (27zN) ( ) N Nz( )

2
c iy N2 -2 Lo
2 27N N 2

1 2 2

Y e Ty P
2 27N N

Hence,



2

In[g(N. )] =1n[2" ()] _25

N

We write this result as
(N.5) =2 (20 exp(= 25
gV, N p i;

Such a distribution of values of s is called a Gaussian distribution. The exact values of g(N,s = 0)

is given by

g(N,0)= #
S5

We consider the Gaussian distribution f'(s,o) defined by

D> g(N,s)=2"~ T g(N,s)ds =2" T f(s,0)ds

where
1 s? . e .

f(s,0)= Tino exp[—g] (Gaussian distribution function)

with
JN
o=—".
2

Note that

25> s? 2 1
exp(——) =exp(——), — =
p( N) p( 202)

Then g(N,s) can be written as



2
S

g(N,s5)=2" J%a w5 )=2"/(0)

The function f(s,o) is normalized as

If all the states are equally probable, then the probability
1
P(N,S) :2—Ng(N,S) = f(S,(T)

is a Gaussian distribution for large N system.

N=100

~40 ~20
Fig. The probability P(N,s) as a function of s. N = 100.

We consider the average

<S>=0

20

40



Hence, we have
(@sy)=N

which is the mean square spin excess. The root mean square spin excess is
<(2$)2>1/2 =N

The fractional fluctuation:

<(2S)2>1/2 |

N JN

The larger N is the smaller is the fractional fluctuation.



