Micro Canonical Ensemble: Balls in bowls
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(August 20, 2018)

1. Four balls and two bowls

Given three balls labeled A, B, and C (distinguishable) and two bowls (a, b), what are the different ways in which we can apportion the balls to the two bowls? We solve this problem using Mathematica.

$$
f=\left(A_{1} a+A_{2} b\right)\left(B_{1} a+B_{2} b\right)\left(C_{1} a+C_{2} b\right)\left(D_{1} a+D_{2} b\right)
$$

Note that $A_{1} a$ denotes the case when the ball A occupies the bowl $a . A_{2} b$ denotes the case when the ball A occupies the bowl b. We expand f in terms of powers of a and b.

((Mathematica))

```
Clear["Global`*"];
f1 = (A1 a + A2 b ) (B1 a + B2 b ) (C1 a + C2 b ) (D1 a + D2 b ) // Expand;
G1[p_, q_] := Coefficient[f1, a}\mp@subsup{\mp@code{p}}{}{p}\mp@subsup{\mathbf{b}}{}{q}]
g1 = Table[{ap b 4-p, G1[p, 4-p]}, {p, 0, 4}] // TableForm
b4 A2 B2 C2 D2
a b 3 A2 B2 C2 D1 + A2 B2 C1 D2 + A2 B1 C2 D2 + A1 B2 C2 D2
a}\mp@subsup{a}{}{2}\mp@subsup{b}{}{2}\quad\textrm{A}2\textrm{B}2\textrm{C}1\textrm{D}1+\textrm{A}2\textrm{B}1\textrm{C}2\textrm{D}1+\textrm{A}1\textrm{B}2\textrm{C}2\textrm{D}1+\textrm{A}2\textrm{B}1\textrm{C}1\textrm{D}2+\textrm{A}1\textrm{B}2\textrm{C}1\textrm{D}2+\textrm{A}1\textrm{B}1\textrm{C}2\textrm{D}
a3b A2 B1 C1 D1 + A1 B2 C1 D1 + A1 B1 C2 D1 + A1 B1 C1 D2
a4 A1 B1 C1 D1
```


2. Ralph Baierlein (Thermal Physics) Problem 2-2

2-2

2. Work out the analog of table 2.2 but with $N=6$ labeled balls. Draw a bar graph of multiplicity versus macrostate, the latter being specified by the number of balls in the right-hand bowl (together with the total number of balls, N). Using symmetry will expedite your work. Using the known total number of microstates (which you can reason to be 2^{6}) provides either a check on your arithmetic or a way to skip one multiplicity computation. Do you see the more-or-less even distribution growing in numerical significance?

See the solution of HW-2 (home work).

Given three balls labeled A, B, C, D, E, and F (distinguishable) and two bowls (a, b), what are the different ways in which we can apportion the balls to the two bowls? We solve this problem using Mathematica.

$$
f=\left(A_{1} a+A_{2} b\right)\left(B_{1} a+B_{2} b\right)\left(C_{1} a+C_{2} b\right)\left(D_{1} a+D_{2} b\right)\left(E_{1} a+E_{2} b\right)\left(F_{1} a+F_{2} b\right)
$$

Note that $A_{1} a$ denotes the case when the ball A occupies the bowl $a . A_{2} b$ denotes the case when the ball A occupies the bowl b. We expand f in terms of powers of a and b.

((Mathematica)) We solve this problem using the mathematica.

```
Clear["Global`*"];
f1 = (A1 a + A2 b) (B1 a + B2 b) (C1 a + C2b) (D1 a + D2 b) (E1a +E2b) (F1a + F2b)//Expand
a}\mp@subsup{}{6}{4}\mathrm{ 11 B1 C1D1E1F1 + a A2 b B1C1D1E1F1 + a A1b B2C1D1E1F1 + a A2 b B2 C1D1E1F1 +
    a A1b B1C2D1E1F1 + + a A2 b B1 C2D1E1F1 + a A A1 b ' B2C2D1E1F1 + a A A b B B2C2D1E1F1 +
    a A1b B1C1D2E1F1 + a A A2 b B1 C1D2E1F1 + a A A1 b ' B2C1D2E1F1 + a A A b b B2C1D2E1F1 +
```



```
    a A1b B1 C1D1E2F1 + a A A2 b B1 C1D1E2F1 + a A1 b b B2 C1D1E2F1 + a A A2 b B2 C1D1E2 F1 +
```



```
    a A A1 b B1 C2D2E2F1 + a ' A2 b b B1 C2D2E2F1 + a 2 A1 b B2 C2D2E2 F1 + a A2 b B2 C2D2E2 F1 +
```



```
    a A1 b B1 C2D2E1F2 + + ' A A b b B1 C2D2E1F2 + a 2 A1 b B C C2D2 E1F2 + a A2 b B2 C2D2 E1F2 +
    a A A1 b ' B1 C1D1E2F2 + + a
    a A1 b B1 C2D1E2F2 + a ' A2 b b B1 C2D1E2F2 + + 2 A1 b B B2 C2D1E2 F2 + a A2 b B B2 C2D1E2 F2 +
    a A1 b B1 C1 D2 E2F2 + a ' A2 b b B1 C1D2E2F2 + a 2 A1 b B2 C1 D2 E2 F2 + a A2 b B2 C1D2 E2 F2 +
```



```
Coefficient[f1, a}\mp@subsup{}{}{6}
A1 B1 C1 D1 E1 F1
Coefficient[f1, a b ]
A2 B1 C1 D1 E1 F1 + A1 B2 C1 D1 E1 F1 + A1 B1 C2 D1 E1 F1 + A1 B1 C1 D2 E1 F1 + A1 B1 C1 D1 E2 F1 + A1 B1 C1 D1 E1 F2
Coefficient[f1, a 4 b
A2 B2 C1 D1 E1F1 + A2 B1 C2 D1 E1F1 + A1 B2 C2D1E1F1 + A2 B1 C1 D2 E1F1 + A1 B2 C1 D2 E1 F1 +
    A1 B1 C2 D2 E1 F1 + A2 B1 C1 D1 E2 F1 + A1 B2 C1 D1 E2 F1 + A1 B1 C2 D1 E2 F1 + A1 B1 C1 D2 E2 F1 +
    A2 B1 C1 D1 E1 F2 + A1 B2 C1 D1 E1 F2 + A1 B1 C2 D1 E1 F2 + A1 B1 C1 D2 E1 F2 + A1 B1 C1 D1 E2 F2
Coefficient[f1, a
A2 B2 C2 D1 E1F1 + A2 B2 C1 D2 E1F1 + A2 B1 C2 D2 E1 F1 + A1 B2 C2 D2 E1 F1 + A2 B2 C1 D1 E2 F1 +
    A2 B1 C2 D1 E2 F1 + A1 B2 C2 D1 E2 F1 + A2 B1 C1 D2 E2 F1 + A1 B2 C1 D2 E2 F1 + A1 B1 C2 D2 E2 F1 +
    A2 B2C1 D1 E1 F2 + A2 B1 C2 D1 E1F2 + A1 B2 C2 D1 E1F2 + A2 B1 C1 D2E1F2 + A1 B2C1 D2E1F2 +
    A1 B1 C2 D2 E1 F2 + A2 B1 C1 D1 E2 F2 + A1 B2 C1 D1 E2 F2 + A1 B1 C2 D1 E2 F2 + A1 B1 C1 D2 E2 F2
Coefficient[f1, a
A2 B2 C2 D2 E1 F1 + A2 B2C2 D1 E2 F1 + A2 B2C1 D2 E2 F1 + A2 B1 C2 D2 E2 F1 + A1 B2 C2 D2 E2 F1 +
    A2 B2 C2 D1 E1F2 + A2 B2C1 D2 E1 F2 + A2 B1 C2 D2 E1F2 + A1 B2C2 D2 E1F2 + A2 B2 C1 D1 E2 F2 +
    A2 B1 C2 D1 E2 F2 + A1 B2 C2 D1 E2 F2 + A2 B1 C1 D2 E2 F2 + A1 B2 C1 D2 E2 F2 + A1 B1 C2 D2 E2 F2
    Coefficient[f1, a' b
A2 B2 C2 D2 E2 F1 + A2 B2 C2 D2 E1 F2 + A2 B2 C2 D1 E2 F2 + A2 B2 C1 D2 E2 F2 + A2 B1 C2 D2 E2 F2 + A1 B2 C2 D2 E2 F2
Coefficient[f1, b
A2 B2 C2 D2 E2 F2
\(\mathrm{f} 1=(\mathrm{a}+\mathrm{b})^{6} / /\) Expand
\(a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}\)
```


3. The case of two balls (distinguishable) in the three bowls

Given three balls labeled A and B (distinguishable) and three bowls (a, b, c), what are the different ways in which we can apportion the balls to the two bowls? We solve this problem using Mathematica. There are $3 \times 3=9$ possible arrangements.

$$
f=\left(A_{1} a+A_{2} b+A_{3} c\right)\left(B_{1} a+B_{2} b+B_{3} c\right)
$$

((Mathematica))
Clear["Global`*"];
G1[p_, $\left.q_{-}, r_{-}\right]:=$Module[\{g1, f1, f2\},
$\mathrm{f} 1=(\mathrm{A} 1 \mathrm{a}+\mathrm{A} 2 \mathrm{~b}+\mathrm{A} 3 \mathrm{c})(\mathrm{B} 1 \mathrm{a}+\mathrm{B} 2 \mathrm{~b}+\mathrm{B} 3 \mathrm{c}) / /$ Expand;
$\mathrm{f} 2=\operatorname{If}\left[p+q+r=2\right.$, Coefficient $\left.\left.\left[\mathrm{f} 1, \mathrm{a}^{p} \mathrm{~b}^{q} \mathrm{c}^{r}\right], 0\right]\right]$;
$\mathbf{g 1}=\operatorname{Table}\left[\left\{a^{p} b^{q} c^{r}, G 1[p, q, r]\right\},\{p, 0,2\}\right.$, \{q, 0, 2\}, \{r, 0, 2\}] // TableForm

10	b 0	$\mathrm{b}^{2} \quad \mathrm{~A} 2 \mathrm{~B} 2$
c 0	b c A3 B2 + A2 B3	$\mathrm{b}^{2} \mathrm{c} 0$
c^{2} A3 B3	$\mathrm{bc}^{2} 0$	$b^{2} c^{2} 0$
a 0	$a b \quad A 2 B 1+A 1 B 2$	$a b^{2} \quad 0$
a c A3 B1 + A1 B3	$a b c \quad 0$	$a b^{2} c \quad 0$
$\mathrm{ac}^{2} 0$	$a b c^{2} 0$	$a b^{2} c^{2} 0$
$\mathrm{a}^{2} \quad \mathrm{~A} 1 \mathrm{~B} 1$	$\mathrm{a}^{2} \mathrm{~b} \quad 0$	$a^{2} b^{2} \quad 0$
$\mathrm{a}^{2} \mathrm{c} 0$	$\mathrm{a}^{2} \mathrm{bc}$ c 0	$a^{2} b^{2} c 0$
$\mathrm{a}^{2} \mathrm{c}^{2} 0$	$\mathrm{a}^{2} \mathrm{bc}^{2} 0$	$a^{2} b^{2} c^{2} 0$

From this table, we have the following conclusion.
(a) Coefficient of a^{2};

A1B1 $\{2,0,0\} \quad \frac{2!}{2!0!0!}=1$
(b) Coefficient of b^{2};

A2B2 $\{0,2,0\} \quad \frac{2!}{0!2!0!}=1$
(c) Coefficient of c^{2};

A3B3 $\{0,0,2\} \quad \frac{2!}{0!0!2!}=1$
(d) Coefficient of $a b$;
A1B2
A2B1
$\{1,1,0\}$
$\frac{2!}{1!1!0!}=2$
(e) Coefficient of $b c$;
A2B3 \quad A3B2 $\quad\{0,1,1\} \quad \frac{2!}{0!1!1!}=2$
(f) Coefficient of $c a$;
A1B3
A3B1
$\{1,0,1\}$
$\frac{2!}{1!0!1!}=2$
(ii) If the balls are indistinguishable,
(a) Coefficient of a^{2};
A1A1
$\{2,0,0\}$
$\frac{2!}{2!1!0!}=1$
(b) Coefficient of b^{2};

A2A2
$\{0,2,0\}$
$\frac{2!}{0!2!0!}=1$
(c) Coefficient of c^{2};

$$
\text { A3A3 }\{0,0,2\} \quad \frac{2!}{0!0!2!}=1
$$

(d) Coefficient of $a b$;

A1A2
(e) Coefficient of $b c$;
A2A3
(f) Coefficient of $c a$;

1

1

A1A3
1

So there are 6 arrangements.

$$
\frac{4!}{2!2!}=6
$$

This problem is equivalent to the following problem,

$$
x_{1}+x_{2}+x_{3}=2
$$

The number of ways of distributing 2 red balls (instead of using A) among 3 labelled bars (\mid) (instead of using bowls). As is evident from Fig. one can get this number by finding the number of permutations of placing in a row all the red balls together with (3-1) $=2$ that designate the dividing walls.

So there are 6 arrangements;

$$
\frac{4!}{2!2!}=6
$$

((Note))
For convenience, we use the black balls instead of the bar. If one labels all the balls with the running numbers, $1,2,3, \ldots, n+f-1$, the number of permutations is $(n+f-1)!$. Note that the
numbers of permutations among the balls with the same color are given by $n!$ for red balls and $(f-1)$! for black balls. Thus we have

$$
W_{n}=\frac{(f+n-1)!}{n!(f-1)!}
$$

which is equivalent to

by replacing the bars by the black dots.

