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Hypothesis of equal a priori probability 

We consider a macroscopic system with the number of particles (N), energy (E – EE  ), 

and volume V in thermal equilibrium There are microscopic states in this system. The total 

number of the microstates is W. All of them occur at the same probability. W is called the 

thermodynamical weight.  

 

For an isolated system all microstates are equally probable. 

In physics and thermodynamics, the ergodic hypothesis[1] says that, over long periods of 

time, the time spent by a system in some region of the phase space of microstates with the same 

energy is proportional to the volume of this region, i.e., that all accessible microstates are 

equiprobable over a long period of time. 

Liouville's Theorem states that, for Hamiltonian systems, the local density of microstates 

following a particle path through phase space is constant as viewed by an observer moving with 

the ensemble (i.e., the convective time derivative is zero). Thus, if the microstates are uniformly 

distributed in phase space initially, they will remain so at all times. But Liouville's theorem does 

not imply that the ergodic hypothesis holds for all Hamiltonian systems. 
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where H is the Hamiltonian of the system, 

In the volume element ff dpdpdpdqdqdq ...... 2121  of the phase space, there are a number of 

microstates which is denoted by 
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Nf 3  (the degree of freedom) 

 

Microscopic state 
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where  is a step function and  is the Dirac delta function. The number of states between 

EEE  -  is given by 
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Note that ) , ,( VEND  is called the density of states (per unit energy). 
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We define the probability distribution function 
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which is a probability which the microstate specified by the point N  contributes to. Note that 
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The average of the physical quantity A; 

 

  )()( NN

MC

N

MC
AfdA . 

 

The entropy S is given by 
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where kB is the Boltzmann constant. The temperature T, the pressures P and the chemical 

potential can be described as 
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The heat capacity is 
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((Note)) 

If a system is completely isolated, the system will stay forever in a definite state if it is 

initially in that state. But, it is useless to speak of a completely isolated system. We have some 

uncertainty in the energy of the system because of uncontrollable interaction between the system 

and the external world. Nevertheless, we can consider a system which is nearly isolated, and 

assume the validity of Liouville's theorem during some interval of time. We shall further admit 

that the time average of a mechanical quantity of a system under a macroscopic equilibrium state 

is equal to the ensemble average (ergodic hypothesis). This ensemble must be time-independent 

or stationary. It is a consequence of Liouville's theorem that, if the ensemble is stationary, its 

density is a function of the energy of the system. Such an ensemble was first clearly mentioned 

by W. Gibbs, and thus it is called Gibbs' ensemble. It satisfies the requirement that the statistical 

ensemble should be compatible with mechanics. The requirement is fundamental to statistical 

mechanics. Thus, energy plays an important special role in statistical mechanics, and it is usually 

assumed that there is no invariant other than energy conservation. In mechanics, there are total 

momentum and total angular momentum as conserved quantities. However, for a system 

confined in a box, we have no momentum conservation, and if some asymmetry of the shape of 

the box is introduced, the total angular momentum will be no longer conserved. 

 

The Principles of Statistical Mechanics 

From the classical Liouville's theorem, we conclude that the weight is proportional to the 

volume of the portion of phase space for a stationary statistical ensemble. The correspondence 

with quantum mechanics leads to the assertion that every quantum state of the same energy E has 

the same weight w(E). This is the fundamental principle, which is called the principle of equal 

probability or the assumption of equal a priori probability. In short, every quantum state is 

considered on equal footing. In other words, the a priori probability for a system to be in a 

particular energy level is the same for all levels. That the time-average is the same as the 

ensemble-average and the principle of equal a priori probability, are two basic principles of 

statistical mechanics. After adopting these principles, we have only to construct the general 

probabilistic theory. The ergodic problem aims at deriving the above principles from mechanics. 

 



Phase space: canonical co-ordinate and canonical momentum: 

 

) ..., , ,, ,..., ,(),( 32121 ff ppppqqqpq  ;  

 

) ..., , ,, ,..., ,(),( 32121 ff ppppqqqHpqH   (1) 

 

Hamilton’s equation 
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(i = 1, 2, 3, …, f = 3N) 

 

Each state of the system is represented by a point in the phase space. As the time changes, the 

representative point moves in phase space, showing the trajectory of the system, the following 

properties result directly from Eq.(2). 

 

(i) The trajectory never cross each other. More than one trajectory never pass through the 

same point. If they cross at an certain instant, their values at an adjacent instant are 

uniquely determined by Eq.(2) 

 

(ii) Two representative points infinitely close to each other at a certain time t1 will always be 

so at any other time t2 in the course of motion. 

 

(iii) We define the (2f-1)-dimensional surface (so called, equi-energy surface), defined by 
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Because of the energy conservation, the representative point starting from a certain point 

on this surface remains for all time  on the same surface in the phase space. 

 

((Ergodic hypothesis)) 

We assume that the trajectory will cover the entire surface of the equi-energy surface. The 

equi-energy surface does not extend to infinity, but forms a closed surface in the phase sspace. 

The aggregate of all the phases which the dynamical system assumes during its temporal 

development is called the temporal ensemble. This temporal ensemble of the system is made up 

all the phases on the equi-energy surface. 

 

((Liouville’s theorem)) 



 

We look at one of the representative points at dtt   
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According to the Hamilton’s equation, this point is related to the point at t = 0  
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The infinitesimally volume element of the phase space )','( pq  is related to that of the phase 

space ),( pq  though the Jacobian 

 

ff

ff

ff

ff

pdpdpqdqdq
ppppqqq

ppppqqq

pdpdpqdqdqdpdq

d...d...
) ..., , ,, ,..., ,(

)' ...,' ,' ,',' ,...,' ,'(

'd...'''d...''''

2121

32121

32121

2121








 

 

Here we note that 
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to the order of dt. Making the use of the identity 
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we get the result 
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and 
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Then the volume of the phase space is conserved. 

 

 
 

The volume in the phase space is given by 
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)( Nv  is the velocity on the surface element. Since 

 

)( 





  Nv

E

H

E
n


 (5) 

 

the surface element is obtained as 
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Note that we use the following formula in the above discussion. 
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In the right side of Eq.(6), 
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the microscopic ensemble theory, the probability distribution function )( N

MCf  is proportional 

to this time (Ergodic theorem). 

 

 

Liouville theorem 
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We assume that the continuity of equation is valid, 
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We use the Taylor expansion for )]([)]([ tfdttf N
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We use the Poisson bracket which is defined by 
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Thus we have the Liouville equation for MCf , 
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