Microcanonical ensemble III
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(date: July 24, 2-16)
We discuss the microcanonican ensemble in more detail

1. The number of states

The total Hamiltonian consists of the Hamiltonian H_{1} for the system 1 (the number of particles N_{1}) and the Hamiltonian H_{2} for the system 2 (the number of particles N_{2})

$$
H_{N}=H_{N_{1}}+H_{N_{2}}
$$

The probability distribution function for the subsystem 1 is obtained as follows. We are not interested in the state of the system 2 . So we integrate $f_{M C}\left({ }^{N} \Gamma\right)$ over all the variables of the system 2 . Then we get

$$
\begin{align*}
f_{1}\left({ }^{N} \Gamma\right) & =\int d^{N_{2}} \Gamma f_{M C}\left({ }^{N} \Gamma\right) \\
& =\int d^{N_{2}} \Gamma \frac{\delta\left(E-H_{N_{1}}-H_{N_{2}}\right) \delta E}{W(N, E, V, \delta E)} \\
& =\frac{\delta E}{W(N, E, V, \delta E)} \int d^{N_{2}} \Gamma \delta\left(E-H_{N_{1}}-H_{N_{2}}\right) \tag{1}\\
& =\frac{\delta E}{W(N, E, V, \delta E)} \Omega_{2}\left(N_{2}, E-H_{N_{1}}, V\right)
\end{align*}
$$

where
Γ^{N} is a point of 6 N dimensional phase space.

$$
\begin{aligned}
& f_{M C}\left({ }^{N} \Gamma\right)=\frac{\delta\left(E-H_{N}\right) \delta E}{W(N, E, V, \delta E)} \\
& \Omega(N, E, V)=\int d^{N} \Gamma \delta\left(E-H_{N}\right) \\
& W(N, E, V, \delta E)=\Omega(N, E, V) \delta E
\end{aligned}
$$

We note that the expectation value is defined by

$$
\langle A\rangle_{M C}=\int d^{N} \Gamma f_{M C}\left({ }^{N} \Gamma\right) A\left({ }^{N} \Gamma\right)
$$

Using this definition, we have the expectation value

$$
\begin{aligned}
f_{M C}\left(E_{1}\right) & =\int d^{N_{1}} \Gamma f_{1}\left({ }^{N_{1}} \Gamma\right) \delta\left(E_{1}-H_{N_{1}}\right) \\
& =\frac{\delta E}{W(N, E, V, \delta E)} \int d^{N_{1}} \Gamma \delta\left(E_{1}-H_{N_{1}}\right) \Omega_{2}\left(N_{2}, E-H_{N_{1}}, V\right) \\
& =\frac{\delta E}{W(N, E, V, \delta E)} \Omega_{2}\left(N_{1}, E_{1}, V\right) \Omega_{2}\left(N_{2}, E-E_{1}, V\right) \\
& =\frac{\delta E}{\Omega(N, E, V, \delta E) \delta E} \Omega_{1}\left(N_{1}, E_{1}, V\right) \Omega_{2}\left(N_{2}, E-E_{1}, V\right) \\
& =\frac{1}{\Omega\left(N_{1+2}, E_{1}+E_{2}, V\right)} \Omega_{1}\left(N_{1}, E_{1}, V\right) \Omega_{2}\left(N_{2}, E-E_{1}, V\right)
\end{aligned}
$$

Note that

$$
\int_{0}^{E} f_{M C}\left(E_{1}\right) d E_{1}=1
$$

since

$$
\begin{aligned}
\Omega_{12}(N, E, V) & =\int_{N^{N}} d^{N} \Gamma\left(E-H_{N_{1}}-H_{N_{2}}\right) \\
& =\int_{0}^{E} d E_{1} \int d^{N_{1}} \Gamma \int d^{N_{2}} \Gamma \delta\left(E-E_{1}-H_{N_{2}}\right) \delta\left(E_{1}-H_{N_{11}}\right) \\
& =\int_{0}^{E} d E_{1} \int d^{N_{1}} \Gamma \delta\left(E_{1}-H_{N_{1}}\right) \int d^{N_{2}} \Gamma \delta\left(E-E_{1}-H_{N_{2}}\right) \\
& =\int_{0}^{E} d E_{1} \Omega_{1}\left(N_{1}, E_{1}, V\right) \Omega_{2}\left(N_{2}, E-E_{1}, V\right)
\end{aligned}
$$

((Kubo))
We consider the two systems (1 and 2). When the energy of the system 1 is between E_{1} and $E_{1}+d E_{1}$, while the energy of the system 2 is E_{2} and $E_{2}+d E_{2}$, the corresponding number of states is given by

$$
\Omega_{1}\left(E_{1}\right) \delta E_{1} \Omega_{2}\left(E_{2}\right) \delta E_{2}
$$

Suppose that $E=E_{1}+E_{2}$. The number of states when the total energy is between E and $E+d E$

$$
\iint_{E<E 1+E 2<E+\delta E} \Omega_{1}\left(E_{1}\right) d E_{1} \Omega_{2}\left(E_{2}\right) d E_{2}=\delta E \int \Omega_{1}\left(E_{1}\right) d E_{1} \Omega_{2}\left(E-E_{1}\right)
$$

2. Canonical ensemble

We consider the system (I) surrounded by the thermal bath (II). The total energy is kept constant.

The probability of finding the system between E and $E+\delta E$

$$
f(E) \delta E=\frac{\Omega(E) \Omega_{\text {bath }}\left(E_{\text {total }}-E\right) \delta E}{\Omega_{\text {total }}\left(E_{\text {total }}\right)}
$$

$\Omega_{\text {bath }}\left(E_{\text {total }}-E\right)$ is the density of state for the thermal bath. $\Omega(E)$ is the density of state for the system. $\Omega_{\text {total }}\left(E_{\text {total }}\right)$ is the density of states for the combined system (system and thermal). The entropy of the thermal bath is given by

$$
\begin{aligned}
k_{B} \ln \Omega_{\text {bath }}\left(E_{\text {total }}-E\right) & =k_{B} \ln \Omega_{\text {bath }}\left(E_{\text {total }}\right)-k_{B}\left[\frac{\partial}{\partial E_{\text {total }}} \ln \Omega_{\text {bath }}\left(E_{\text {total }}\right)\right] E+\ldots \\
& =S_{\text {bath }}\left(E_{\text {total }}\right)-\frac{\partial S_{\text {bath }}\left(E_{\text {total }}\right)}{\partial E_{\text {total }}} E+\frac{1}{2!} \frac{\partial^{2} S_{\text {bath }}\left(E_{\text {total }}\right)}{\partial E_{\text {total }}} E^{2}+\ldots
\end{aligned}
$$

where

$$
k_{B} \ln \Omega_{\text {bath }}\left(E_{\text {total }}\right)=S_{\text {bath }}\left(E_{\text {total }}\right)
$$

We define the temperature T (in thermal equilibrium) as

$$
\frac{\partial S_{\text {bath }}\left(E_{\text {total }}\right)}{\partial E_{\text {total }}}=\frac{1}{T}=k_{B} \beta
$$

The energy is a function of T. So we assume that T is an independent variable Thus we get

$$
k_{B} \ln \Omega_{\text {bath }}\left(E_{\text {total }}-E\right)=S_{\text {bath }}\left(E_{\text {total }}\right)-k_{B} \beta E
$$

or

$$
\Omega_{\text {bath }}\left(E_{\text {total }}-E\right)=\exp \left[\frac{S_{\text {bath }}\left(E_{\text {total }}\right)}{k_{B}}-\beta E\right]=\exp \left[\frac{S_{\text {bath }}\left(E_{\text {total }}\right)}{k_{B}}\right] \exp (-\beta E)
$$

The probability is then obtained as

$$
f(E) \delta E=\frac{\exp \left[\frac{S_{\text {bath }}\left(E_{\text {total }}\right)}{k_{B}}\right] \Omega(E) \exp (-\beta E) \delta E}{\Omega_{\text {total }}\left(E_{\text {total }}\right)}
$$

or

$$
f(E) \delta E=\frac{\exp \left[\frac{S_{\text {bath }}\left(E_{\text {total }}\right)}{k_{B}}\right] \Omega(E) \exp (-\beta E) \delta E}{\Omega_{\text {total }}\left(E_{\text {total }}\right)}
$$

or

$$
f(E)=\frac{\Omega(E) \exp (-\beta E)}{Z_{C}(\beta)}
$$

where

(sum of states, state-sum)
((Note))

We consider a function defined by

$$
g(E)=k_{B} \ln \left[\Omega(E) \Omega_{\text {bath }}\left(E_{\text {bath }}\right)\right]=k_{B} \ln [\Omega(E)]+k_{B} \ln \left[\Omega_{\text {bath }}\left(E_{\text {bath }}\right)\right]
$$

with

$$
E_{\text {total }}=E+E_{\text {bath }}
$$

Suppose that $g(E)$ has a maximum at $E=E^{*}$.

$$
\begin{aligned}
\frac{d g(E)}{d E} & =k_{B}\left[\frac{d \ln \Omega(E)}{d E}+\frac{d \ln \Omega_{\text {bath }}\left(E_{\text {bath }}\right)}{d E_{\text {bath }}} \frac{d E_{\text {bath }}}{d E}\right. \\
& =k_{B} \frac{d \ln \Omega(E)}{d E}-k_{B} \frac{d \ln \Omega_{\text {bath }}\left(E_{\text {bath }}\right)}{d E_{\text {bath }}} \\
& =0
\end{aligned}
$$

or

$$
k_{B} \frac{d \ln \Omega(E)}{d E}-k_{B} \frac{d \ln \Omega_{\text {bath }}\left(E_{\text {bath }}\right)}{d E_{\text {bath }}}
$$

The left-hand side is related to the system, while the right-hand side is related to the thermal bath. We define the temperature T as

$$
k_{B} \frac{d \ln \Omega_{\text {bath }}\left(E_{\text {bath }}\right)}{d E_{\text {bath }}}=\frac{\partial S_{\text {bath }}}{\partial E_{\text {bath }}}=\frac{1}{T}
$$

where k_{B} is the Boltzmann constant. We note that for the condition of local maximum, we need the condition

$$
\frac{d^{2} g(E)}{d E^{2}}=k_{B} \frac{d^{2} \ln \Omega(E)}{d E^{2}}+k_{B} \frac{d^{2} \ln \Omega_{\text {bath }}\left(E_{\text {bath }}\right)}{d^{2} E_{\text {bath }}}<0
$$

or

$$
\begin{aligned}
& \frac{\partial}{\partial E} \frac{1}{T(E)}+\frac{\partial}{\partial E_{\text {bath }}} \frac{1}{T_{\text {bath }}\left(E_{\text {bath }}\right)}<0 \\
& \frac{\partial}{\partial E} T(E)+\frac{\partial}{\partial E_{\text {bath }}} T_{\text {bath }}\left(E_{\text {bath }}\right)>0
\end{aligned}
$$

In general,

$$
\frac{\partial}{\partial E_{\text {bath }}} T_{\text {bath }}\left(E_{\text {bath }}\right) \rightarrow 0
$$

and

$$
\frac{\partial}{\partial E} T(E)>0
$$

