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We consider the system consisting of two states. The energies of the two states are given 

by 0 (<0) and 0 (>0), respectively. These two states are non-degenerate. In the 

thermal equilibrium. We know that the probability of finding the system in the upper 

state is  
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and that the probability of finding the system in the lower state is 
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where Z1 is the partition function,  
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When the temperature T is positive (usual case), P2 is always larger than P1. When T 

becomes infinity, P1 is equal to P2. 

 

((Population inversion, negative temperature)) 

In statistical mechanics, a population inversion occurs while a system (such as a 

group of atoms or molecules) exists in a state in which more members of the system are 

in higher, excited states than in lower, unexcited energy states. It is called an "inversion" 

because in many familiar and commonly encountered physical systems, this is not 

possible. The concept is of fundamental importance in laser science because the 

production of a population inversion is a necessary step in the workings of a standard 

laser. In our notation, the temperature becomes negative since 
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Here we discuss the concept of negative temperature using the problem of two energy 

states (micro-canonical ensemble and canonical ensemble) 

 

1. Micro-canonical ensemble 



 

Reference 

R. Kubo, Statistical Mechanics, An Advanced Course with Problems and 

Solutions (North-Holland, 1965). 

 

There is a system consisting of N independent particles. Each particle can have only one 

of the two energy levels, 0 , and 0 . Find the thermodynamics weight WM of a state 

with the total energy 
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and discuss the statistical-thermodynamic properties of the system for the range 0E , 

deriving especially the relation between temperature T and the energy E as well as the 

specific heat. 

 

((Solution)) 

If N  particles are in the state with energy 0  and N  particles are in the state with 

energy 0 , the energy of the total system is 
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Since   NNN , one has 
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Now we consider the thermodynamic weight which is given by 
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which is the possible ways of choosing N  particles out of N to occupy the state with 

0 , and N  particles out of N to occupy the state with 0 . The entropy of the system is 

 



})]!(
2

1
ln[)]!(

2

1
ln[!{ln

ln)(

MNMNNk

WkES

B

MB




 

 

Using the Stirling’s formula, we get the entropy S as 
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where 
0N

U
x  . We define the temperature T as 
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Figure shows the plot of y vs x. 
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where 

 

00

00

/1

/1

1

1

















ee

ee

e

e
x

T

T

 

 



or 

 














x

x

Tk
T B

1

1
ln

1

2 0
 

 

with 
TkB

1
 . 

 

 
 

Fig. Plot of )/( BNkS  vs )/( 0NU . The blue points for x<0 correspond to the case of 

the negative normalized temperature 
02
Tk

T B (>0), while the purple points for 

x>0 correspond to the case of the positive normalized temperature 
02
Tk

T B (<0), 
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Fig. Temperature T  vs x. Note that 0T  in the region )10(  x . 

 

 

We note that 0T  (negative temperature) for 0
0


N
E

x . So that this system is not 

normal in the sense of statistical mechanics. Since, however, it is normal in the range 

0
0


N
E

x . One can discuss the property of this system in this range. 
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Thus we have 
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Fig. Plot of the normalized energy )/( 0NU  vs the normalized temperature 0/TkB . 

 

Equations (1a) and (1b) gives the probabilities of finding any one particle in the states 

0 , and 0 , respectively, and have the form of a canonical distribution. The specific 

heat is calculated as 
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Wnen 02 , one rewrite it as 
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We make a plot of the heat capacity as a function of temperature; 

 

BNk

C
y  , 




Tk
x B  

 

kB T

0

U

N 0

1 2 3 4 5 6

0.8

0.6

0.4

0.2



where 

 

2/1

/1

2 )1(

1




x

x

e

e

x
y  

 

)]12(21[
)1(

' /1

43/1

/1




 xex
xe

e
y x

x

x

 

 

The root of y’ = 0 is obtained as 416778.0x . 

 

 
 

Fig. Plot of the normalized specific heat )/( BNkC  vs the normalized temperature 

 /Tkx B . 02 . The specific heat show a peak at 416778.0x . 

 

The specific heat of this form is called the Schottky specific heat. When a system has the 

excitation energy , the specific heat anomaly with a peak as shown in the above Figure, 

is actually observed. 

 

2. Canonical ensemble 

The partition function for the canonical ensemble 
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where 1CZ  is the on-particle partition function, 
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The Helmholtz free energy: 

 

1lnln CBCNB ZTNkZTkF   

 

The internal energy: 
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So the result form the approach based on the canonical ensemble is the same as that based on the 

micro-canonical ensemble. 

 

The heat capacity is 
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The entropy S is calculated as 
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Thus we have 
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((Mathematica)) ParametricPlot 

We make a plot (ParametricPlot) of 
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Suppose that 
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Clear "Global` " ;

U1 Tanh x ;

S1 Log 2 Cosh x x Tanh x ;

h1 ParametricPlot U1, S1 , x, 20, 20 ,

PlotRange All, AspectRatio Automatic,

PlotStyle Red, Thick ;

h2

Graphics

Text Style "U N 0 ", Black, Italic, 12 ,

0.85, 0.05 ,

Text Style "S NkB ", Black, Italic, 12 ,

0.2, 0.8 ;

Show h1, h2
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For 1x , 
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Using the relation 
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The normalized temperature is 
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6. Negative temperature 

C. Kittel Elementary Statistical Physics (John Wiley & Sons, 1958) p.114. 

 

 
 

Fig. Entropy as a function of energy for a two-levels system; the sign of the 

temperature is given by the sign of the slope 
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In the above figure, we sketch the dependence of the entropy S on U. Because the 

slope 
U
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 is positive on the left side of the figure, the temperature there is positive (T>0). 

On the right side of the figure, on the other side, the slope is negative and the temperature 

is negative (T<0). 

It is instructive to recall that entropy is the logarithm of the number of accessible 

states. It is then immediately apparent that the entropy will be zero at 1
0
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x , 

because here all the particles are in one state. At intermediate energies the entropy is 

positive, and we can see that the entropy is symmetric about the zero of energy. 
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We note that negative temperatures correspond to higher energies than positive temperatures. 

When a positive- and a negative-temperature system are brought into thermal contact, heat will 

flow from the negative temperatures to the positive temperatures. Thus we say that negative 

temperatures are hotter than positive temperatures. The temperature scale from cold to hot runs 

 

T = +0 K, …, +300 K, …, K  , .., -300 K, …, (-0) K.  

 

Note particularly that, when a body at -300 K is brought into contact with an identical body at 

300 K, the final temperature is not 0 K, but is K  , the two signs corresponding actually to the 

same temperature. In many respects T/1  is a more instructive measure of temperature than is T. 

Increasing values of -1/T correspond to the body’s becoming hotter and hotter.  
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When the temperature is negative, the population in the upper energy state is larger than the 

population in the ground state.  

 

 
 

Fig. Inverse temperature T/1  vs x. 
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7. Probability 

The probability for the low-energy level state 
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The probability for the high-energy level state 
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Note that 

 

low level high level 1P P     

 

 
 

Fig. Probability low-levellP P  and probability high-levelhP P  as a function of x. 
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For 0x  , low level high level.P P   

 

For 0x  , low level high level.P P   (population inversion) 
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