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Here we discuss the thermodynamic properties of simple harmonic systems using the approach
of microcanonical ensemble. For the system with f simple harmonics, we need to discuss the
multiplicity (corresponding to the density of states) for each energy level. Once the multiplicity is
evaluated, the entropy and temperature can be determined along the approach of microcanonical
ensemble.

1. Energy separation (different)
(a) One particle system
The separation energy is different. For simplicity we consider only the three energy levels.
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I+x+y)=1+x+y

There are 3 states.

(&) multiplicity = coefficient of 1 =1
(&,) multiplicity = coefficient of x =1
(&) multiplicity = coefficient of y =1

(b).  The two particle system:

(I+x+y)° =1+2x+x" +2y+2xp+ )’



There are 3% =9 states.

(&,6) multiplicity = coefficient of 1 =1
(&, &) multiplicity = coefficient of x* = 1
(&, &) multiplicity = coefficient of y* =1
(&,&) multiplicity = coefficient of x = 2
(& &) multiplicity = coefficient of y =2
(&,,&;) multiplicity = coefficient of xy =2

(c) The three particle system:
(I+x+p) =143x+3x> + X’ +3y+6xy +3x°y + 3" +3xp° + )’
(d). The four particle system:

(I+x+ ) =1+4x+6x> +4x +x* +4y+12xp +12x7y
+4x3y+6y2 +12xy2 +6xzy2 +4y3 +4xy3 +y4

(e) n particle system
In general, for the n-particle system

A+x+y)

2 The separation energy (the same)
We consider that the energy separation is the same.
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There are 3% =9 states.

(b)

One particle system

(I+x+x>)° =1+ 2x+3x> +2x° +x*
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The two particle system (with two energy levels)

multiplicity = coefficient of 1 = 1
multiplicity = coefficient of x> =1
multiplicity = coefficient of x* =1
multiplicity = coefficient of x = I
multiplicity = coefficient of x> =2

multiplicity = coefficient of x° =2

& (degeneracy: go)

& (degeneracy g4)

(energy =0)
(energy = 2A¢)
(energy = 4A¢)
(energy = Ag)
(energy = 2A¢)
(energy = 3A¢)



(g +g2x)2 = g12 +g22x2 +2g,8,x

(&,€) multiplicity = coefficient of 1 = g12 (energy =0)

(&,&,) multiplicity = coefficient of x = 2g,g, (energy = Ag)

(¢ &) multiplicity = coefficient of x* = g, (energy = 2A¢)
3. Simple harmonics

We discuss the multiplicity function for harmonic oscillators
Harmonic oscillator (one system):

1 1 o
H=—7p +—mwo’q’ (Hamiltonian)
2m 2

The quantum state of a harmonic oscillator:
~ 1
H|s> =ho(s +5)s|n>

s is a positive integer or zero. @ is the angular frequency of the oscillator. The number of states is
infinite and multiplicity of each state is one. Now we consider a system of N such oscillators, all
of the same angular frequency. We consider the multiplicity function g(N,n) for the N oscillators.

E=nh0)+%ha)=(sl + 5, +...+sN)ha)+%ha)

or

S48, +.. s, =n
where ?ha) is the zero point energy of the simple harmonics (quantum mechanics in origin),

0<s <o, 0<s,<0,...... , 0<5s, <o



Fig.
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g(N,n) —— niw
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g(N,2) —— 25w
9N, ) ——— fw
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Energy level and the multiplicity for the system with the energy E = nhiw, where the zero
point energy is not taken into account. g(N = f,M = n) is the multiplicity

We begin the analysis by going back to the multiplying function for a single oscillator.

g(ln)=1 for all  (or s).

We need a function to represent or generate the series

o0

St =Y =L for [ <1.
n=0 -

n=0

For the problem of N oscillators, the generating function is



(1%) =(1-0"= (it"} = ig(N,n)t"

because the number of ways a term ¢" can appear in the N-fold product, is precisely the number
of ordered ways in which the integer n can be formed as the sum of N non-negative integers.

dn 1 N dn—l

dt" Cde! NA-n

n-=2

d
=N(N+D)——(1-1) ™2
(N+D)— 2z (1-10)

dn—3
dtn73

= N(N +1)ed(N + 1= 1)1 =) ¥

= N(N+1)(N +2)—(1— 1) ¥

Y
= M(l _ t)—(N+n)
(N -1
We have
’ Y
g(N,n)= 1jmld_(1_t)—zv _WN+n=D!
=0 n' dtn n' (]V-l)'

We use the Stirling’s formula.
1 1
In(n!)=(n+ 5) Inn—n+ Eln@ﬂ)

Ing(N,n)=In(N +n—1)In(x!) - In[(N - 1)!]

—(N- mn(Mj N nln(Mj e
N-1 n 2

1 (N+n-1
+—In| —"—
2 {n(N—l)]

or



n nN

~ Nln(l+£}+nln(l+ﬁj
N n

- N[ln[l + ij + iln(l + ﬁj]
N N n

n n n n
= N[(l +N)ln(l +W) —ﬁlnﬁ]

Ing(N,n) Nln(N;”J+n1n(N+”J+%1n(N+”J

We make a plot of the function

f(x)=0+x)In(1+x)—xInx

where
n
X =—
N
4.
- f(x)
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x=n/N
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((R. Kubo)) R. Kubo, Statistical Mechanics (Elsevier Science, North-Holland, 1965) p.89
Problem 26

5. N independent oscillators
The energy level of an oscillator with angular frequency  is given by



1
g =(s+)hw
o= 2)

with s =0, 1, 2, .... When a system consisting of N almost independent oscillators, has the total
energy

E :%Nha)—i-Mha) (M; integer)
(1) Find the thermodynamic weight W, , and (i1) determine the relation between the temperature
of this system and E.
((Solution))
If the quantum state of the i-th oscillator is given by |si>, we have

E:%fha;+Mha)=%fha)+(sl+S2+...+sf)ha)

or

S8, t+s,=n

Thus the thermodynamic weight /¥, of a macroscopic state with the total energy E is equal to the
number of ways of distributing » red balls among flabelled bars (|). A box may be empty since s;

= 0 is possible. As is evident from Fig. one can get this number by finding the number of
permutations of placing in a row all the red balls together with (f~1) that designate the dividing
walls. For convenience, we use the black balls instead of the bar. If one labels all the balls with the
running numbers, 1, 2, 3, ..., ntf-1, the number of permutations is (n+ f —1)!. Note that the

numbers of permutations among the balls with the same color are given by #n! for red balls and
(f —1)! for black balls. Thus we have

y = +n=D)!
nl(f —1)!

((Example-1))

f=5 n=11.



S;+S,+85,+85,+5,=2+5+0+3+1=11=n

with
s1=2 |2>
52=5 |5>
53=0 |0>
s4=3 |3>
s5=1 |1>
f-1=4 (the number of walls); the number of black dots
® O ® 6 6 0 © e 6 o ®

which is equivalent to

by replacing the bars by the black dots.

[5> [5> o [5> [5> [5>
[4=> [4=> [4=> |4=> [4=>
[3> [3> [3> [3> @ [3>
|2> o |2 |2> |2> |2
[1> [1> [1> [1> 1> ———




((Example-2))
f=6, n=11.

S+, s+, 8 +85,=2+44+0+3+1+2=12=n

|6> |6> |6> |6> |6> |6
|5= |5> |5= |5= |5= |55 =——
|4> |4> @ |4> |4> |4> |4
|3> |3> |3> |3> @ |3> |3>
|2> —@ |2> |2> |2> |2> 2> —@—
1= 1> 1> 1= 1= & [15> ——
|0> |0> |0> @ |0> |0> |0>

1
There are 6 oscillators. The oscillator is in a state |s> . The energy eigenvalue is (s +5)ha) . In the

above figure, we have one for |2>, one for |4>, one for |0> , one for |3>, one for |l> , and one for

one for | 2> . Then the total energy E is given by

1 1 1 1 1 1
E=Q2+)ho+(@+H)ho+0+-)ho+(G+)ho+(1+-)ho+(2+-)h
@D+ G+ Do+ 0+ )ho+ 3+ Dho+ 1+ Dho+(2+2)ho

:(2+4+0+3+1+2)hw+gha)

f

where E=(n +n, +..+nf)ha)+5ha)=(n+

f

E)hw,with n=m+n+..+n,=12 and f=6.

6. Microcanical ensemble for the f'simple harmonics
We now calculate the entropy

S=kyIng(f,n)

= L+ D)+ 5 - Lin 2
M0+ =273
1 E 1 E. . E 1 E 1
G 0" e e 2 e 2



where

n E 1

7 o 2

The temperature 7 is defined as

E 1

1 (asj fho 2
—_— =] — = — 1

T \0E), hw E 1

2

fho
or
E 1
fho 2 1
s R e
fho 2 fho 2
or
E 1 fiw
—:—ha)+T
fo2 exp(——) —1
k,T
7. Canonical ensemble

The partition function for one harmonics

Ze, = gexp[—ﬂm + o]

e—ﬁha)/Z

l-e
ool

ﬁ'hw_l

—fho

The partitions function for f'simple harmonics



Zey(B)=(Ze,)

e fPhew!2 (1 _ e*ﬁ’fm )*.f

Zoy(B)= IdEQ(E )exp(—pE) (Laplace transformation)

The inverse Laplace transformation

AUE) = [df Zey ()™

fh{u

1 B(E-
[ d e 2 1 —ﬁh{z) -f
27zi~[ P ( )
Note that

(f+n 1)
Z 1)vn|

Then we have the density of states as

(f+n-1) 1 PE-L2 o)
UE)= z(f )'n vzm.[ﬂ

When S =ix

'E—@—nhw
Q(E) = Z(f+n D1 J- Xﬂew( > )

o (f=Dln! 27
Z(f+” SE -T2 i)
S (f D! 2
8. Canonical ensemble for the f~ simple harmonics

The one-oscillator partition function is given by

© 1 ﬂha) © Pho

—ﬁhw(wf) Bl 1
_ 2 Prhe 2

Zo=Ye P et

n=0

The f-oscillator partition function is given by



l1-e

. e I
ey = =]

when x = e ™. The partition function for the fharmonic oscillators can be rewritten as

/?/ha) 1
Zy=e ? (_—x)/
ﬂ/hw
=e (1 —e )if

)'m'
ffho

ZZ(f 1+m)' _Te—mﬂh{u

m=0 1) ! m'
where

(f-1+m)! ,
Z f=Dimt

(see the proof using Mathematica below).

The multiplicity (degeneracy) for the |Em> state is

(f —1+m)!

g(f,m)= 7~ Dim!

and the energy for the |Em> state is given by

E, :mha)+%ﬁza):(m+§)ha).

1 . .
where ) fho is the zero point energy.

((Mathematica))



" St o °= (f+m_1)!'
Clear["Global *"]; g[f , m ] := (£-1) ! m1’

1 15
eq1=Series[(1—) , {x, 0, 20}]

1+15x+120x°+680x°+3060x"+11628 x°+
38760x°+116280x' +319770x° +817190x° +
1961256 x*)+4457400x" + 9657700 x™ +
20058300 x> +40116600x'* + 77558760 x> +
145422675 %% +265182525 %' + 471435600 x"° +
818809200 x*° + 1391975640 x°° + 0[x]**

Al[n ] := Coefficient[eql, x, n];
listl = Table[{n, g[15, n], A1[n]}, {n, O, 20}];

Prepend[Table[{n, g[15, n], Al[n]}, {n, O, 20}],
"n", " g[£f=15,n]", "coefficient(x")"}] //
TableForm
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g[f=15,n]
1

15

120

680

3060
11628
38760
116280
319770
817190
1961256
4457400
9657700
20058 300
40116 600
77558760
145422 675
265182525
471435600
818809200
1391975640

coefficient (x")

1

15

120

680

3060
11628
38760
116280
319770
817190
1961256
4457400
9657700
20058 300
40116 600
77558760
145422675
265182 525
471435600
818809 200
1391975640



