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Here we discuss the thermodynamic properties of simple harmonic systems using the approach 

of microcanonical ensemble. For the system with f simple harmonics, we need to discuss the 

multiplicity (corresponding to the density of states) for each energy level. Once the multiplicity is 

evaluated, the entropy and temperature can be determined along the approach of microcanonical 

ensemble. 

 

1. Energy separation (different) 

(a) One particle system 

The separation energy is different. For simplicity we consider only the three energy levels. 
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There are 3 states. 

 

)( 1   multiplicity = coefficient of 1 = 1 

)( 2   multiplicity = coefficient of x  = 1 

)( 3   multiplicity = coefficient of y  = 1 

 

(b). The two particle system: 

 
222 2221)1( yxyyxxyx   

 

1 1

2 x

3 y



There are 32 =9 states. 

 

) ,( 11    multiplicity = coefficient of 1 = 1 

) ( 22    multiplicity = coefficient of 2x  = 1 

) ,( 33   multiplicity = coefficient of 2y  = 1 

) ,( 21   multiplicity = coefficient of x = 2 

) ( 31    multiplicity = coefficient of y  = 2 

) ,( 32   multiplicity = coefficient of xy  = 2 

 

(c) The three particle system: 
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(d). The four particle system: 
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(e) n particle system 

In general, for the n-particle system 
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2. The separation energy (the same) 

We consider that the energy separation is the same. 

 



 
 

(a) One particle system 
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There are 32 =9 states. 

 

) ,( 11    multiplicity = coefficient of 1 = 1  (energy =0) 

) ( 22    multiplicity = coefficient of 2x  = 1  (energy = 2 ) 

) ,( 33   multiplicity = coefficient of 4x  = 1  (energy = 4 ) 

) ,( 21   multiplicity = coefficient of x = 2  (energy =  ) 

) ( 31    multiplicity = coefficient of 2x  = 2  (energy = 2 ) 

) ,( 32   multiplicity = coefficient of 3x  = 2  (energy = 3 ) 

 

(b) The two particle system (with two energy levels) 

 

 
 

1 1

2 x

3 x2

1 degeneracy g1

2 degeneracy : g2
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) ,( 11    multiplicity = coefficient of 1 = 
2

1g   (energy =0) 

) ,( 21   multiplicity = coefficient of x = 212 gg   (energy =  ) 

) ( 21    multiplicity = coefficient of 2x  = 2g   (energy = 2 ) 

 

3. Simple harmonics 

We discuss the multiplicity function for harmonic oscillators 

 

Harmonic oscillator (one system): 
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The quantum state of a harmonic oscillator: 

 

nsssH )
2

1
(ˆ  ℏ  

 

s is a positive integer or zero.   is the angular frequency of the oscillator. The number of states is 

infinite and multiplicity of each state is one. Now we consider a system of N such oscillators, all 

of the same angular frequency. We consider the multiplicity function ),( nNg  for the N oscillators. 
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or 
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where ℏ
2

N
 is the zero point energy of the simple harmonics (quantum mechanics in origin), 

 

 10 s ,  20 s ,……,  Ns0  

 



 
 

Fig. Energy level and the multiplicity for the system with the energy ℏnE  , where the zero 

point energy is not taken into account. ),( nMfNg   is the multiplicity 

 

We begin the analysis by going back to the multiplying function for a single oscillator. 

 

1),1( ng  for all n (or s). 

 

We need a function to represent or generate the series 
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For the problem of N oscillators, the generating function is 
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because the number of ways a term nt  can appear in the N-fold product, is precisely the number 

of ordered ways in which the integer n can be formed as the sum of N non-negative integers. 
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We have 
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We use the Stirling’s formula. 
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We make a plot of the function 
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where 
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((R. Kubo)) R. Kubo, Statistical Mechanics (Elsevier Science, North-Holland, 1965) p.89 

Problem 26 

 

5. N independent oscillators 

The energy level of an oscillator with angular frequency  is given by 
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with s = 0, 1, 2, …. When a system consisting of N almost independent oscillators, has the total 

energy 
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  (M; integer) 

 

(i) Find the thermodynamic weight MW , and (ii) determine the relation between the temperature 

of this system and E. 

 

((Solution)) 

If the quantum state of the i-th oscillator is given by is , we have 
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or 
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Thus the thermodynamic weight nW  of a macroscopic state with the total energy E is equal to the 

number of ways of distributing n red balls among f labelled bars ( | ). A box may be empty since si 

= 0 is possible. As is evident from Fig. one can get this number by finding the number of 

permutations of placing in a row all the red balls together with (f-1) that designate the dividing 

walls. For convenience, we use the black balls instead of the bar. If one labels all the balls with the 

running numbers, 1, 2, 3, …, n+f-1, the number of permutations is )!1(  fn . Note that the 

numbers of permutations among the balls with the same color are given by !n  for red balls and 

)!1( f  for black balls. Thus we have 
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((Example-1)) 

 

f = 5, n = 11. 

 



nsssss  111305254321  

 

with 

 

s1= 2  2  

s2= 5  5  

s3= 0  0  

s4= 3  3  

s5= 1  1  

 

41f  (the number of walls); the number of black dots 

 

 
 

which is equivalent to 

 

 
 

by replacing the bars by the black dots. 

 

 
 



((Example-2)) 

 

f = 6, n = 11. 

 

nssssss  12213042654321  

 

 

There are 6 oscillators. The oscillator is in a state s . The energy eigenvalue is ℏ)
2

1
( s . In the 

above figure, we have one for 2 , one for 4 , one for 0 , one for 3 , one for 1 , and one for 

one for 2 . Then the total energy E is given by 
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6. Microcanical ensemble for the f simple harmonics 

We now calculate the entropy 
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where 
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The temperature T is defined as 
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7. Canonical ensemble 

The partition function for one harmonics 
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The partitions function for f simple harmonics 
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  )exp()()( EEdEZCN   (Laplace transformation) 

 

The inverse Laplace transformation 
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Note that 
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Then we have the density of states as 
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When ix , 
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8. Canonical ensemble for the f- simple harmonics 

 

The one-oscillator partition function is given by 
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The f-oscillator partition function is given by 
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when ℏ ex . The partition function for the f-harmonic oscillators can be rewritten as 
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where 
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  (see the proof using Mathematica below). 

 

The multiplicity (degeneracy) for the mE  state is 
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and the energy for the mE  state is given by 
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where ℏf
2

1
 is the zero point energy. 

((Mathematica)) 

 



Clear "Global` " ; g f , m :
f m 1

f 1 m
;

eq1 Series
1

1 x

15

, x, 0, 20

1 15 x 120 x
2

680 x
3

3060 x
4

11628 x
5

38 760 x
6

116 280 x
7

319 770 x
8

817 190 x
9

1 961256 x
10

4 457400 x
11

9 657700 x
12

20 058300 x
13

40 116600 x
14

77 558760 x
15

145 422675 x
16

265 182525 x
17

471 435600 x
18

818 809200 x
19

1 391975 640 x
20

O x
21

A1 n : Coefficient eq1, x, n ;

list1 Table n, g 15, n , A1 n , n, 0, 20 ;

Prepend Table n, g 15, n , A1 n , n, 0, 20 ,

"n", " g f 15,n ", "coefficient x
n
"

TableForm



 

n g f 15,n coefficient x
n

0 1 1

1 15 15

2 120 120

3 680 680

4 3060 3060

5 11628 11628

6 38760 38760

7 116280 116280

8 319770 319770

9 817190 817190

10 1961 256 1961 256

11 4457 400 4457 400

12 9657 700 9657 700

13 20058 300 20058 300

14 40116 600 40116 600

15 77558 760 77558 760

16 145422 675 145422 675

17 265182 525 265182 525

18 471435 600 471435 600

19 818809 200 818809 200

20 1391 975640 1391 975640


