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1. Adiabatic free expansion (irreversible process) (from lecture note on 

Phys.131, General Physics) 

 

 
 

An adiabatic free expansion of an ideal gas i.e. where a greater volume suddenly 

becomes available to the gas is an irreversible process which proceeds through a chaotic 

non-equilibrium path. Nonetheless we can characterize the beginning and end points 

and the net values of relevant changes in energy. Since the gas expands against a 

vacuum it does no work and thus 

 

0 fiW . 

since there is no motion of the boundary (nothing to push against; there is no movable 

piston). Combining this with our requirement that the process is adiabatic, we have 

 

000   fififi WQE  

 

If we are dealing with an ideal gas, then the absence of a change in the internal energy 

implies that the temperature is the same before and after the expansion even though no 

temperature is defined during the irreversible process: Tf = Ti. 



In order to calculate the entropy of this process, we need to find an equivalent 

reversible path that shares the same initial and final state. A simple choice is an 

isothermal, reversible expansion in which the gas pushes slowly against a piston. Using 

the equation of state for an ideal gas this implies that 

 

ffii VPVP   

 

The initial and final states a (Pi, Vi) and b (Pf, Vf) are shown on the P-V diagram. Even 

though the initial and final states are well defined, we do not have intermediate 

equilibrium states that take us from the state a (Pi, Vi) and the state b (Pf, Vf). 

 

 
 

Fig. Note that the irreversible process (green line) cannot be described in such a line 

in the P-V phase diagram. The isothermal process is denoted by the blue line. 

 

We thus replace the free expansion with an isothermal expansion that connects states i 

and f. Then the entropy can be calculated as follows (the isothermal process) 
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  (reversible process) 

 

Since Vf>Vi, S is positive. This indicates that both the entropy and the disorder of the 

gas increase as a result of the irreversible adiabatic expansion. 

 

((Note)) 

 

TdSdQr   (reversible process) 
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Even if 0irrdQ  (adiabatic process), 

 

0dS . 

 

Note that 0dS  for the irreversible process and 0dS  for the reversible process. 

 

2. The entropy for the adiabatic free expansion (microscopic states) 

Entropy can be treated from a microscopic viewpoint through statistical analysis of 

molecular motions. We consider a microscopic model to examine the free expansion of 

an ideal gas. The gas molecules are represented as particles moving randomly. Suppose 

that the gas is initially confined to the volume Vi. When the membrane is removed, the 

molecules eventually are distributed throughout the greater volume Vf of the entire 

container. For a given uniform distribution of gas in the volume, there are a large 

number of equivalent microstates, and the entropy of the gas can be related to the 

number of microstates corresponding to a given macro-state. 

 

 
 

Fig. The volume of the system in the initial state is Vi (the macrostate). The volume 

of cell (the microstate) is Vm. The number of cells (sites) is given by the ratio 

Vi/Vm. 

 

We count the number of microstates by considering the variety of molecular 

locations available to the molecules. We assume that each molecule occupies some 



microscopic volume mV . The total number of possible locations of a single molecule in 

a macroscopic initial volume iV  is the ratio 
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which is a very large number. The number iw  represents the number of the microstates, 

or the number of available sites. We assume that the probability of a molecule 

occupying any of these sites are equal. 

Neglecting the very small probability of having two molecules occupy the same site, 

each molecule may go into any of the wi sites, and so the number of ways of locating N 

molecules in the volume becomes 
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Similarly, when the volume is increased to Vf, the number of ways of locating N 

molecules increases to 
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Then the change of entropy is obtained as 
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When ANN  , we have 
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We note that the entropy S is related to the number of microstates for a given macrostate 

as 

 

WkS B ln . 

 

The more microstates there are that correspond to a given macrostate, the greater the 

entropy of that macrostate. There are many more microstates associated with disordered 

macrostates than with ordered macrostates. Therefore, it is concluded that the entropy is 

a measure of disorder. Although our discussion used the specific example of the 

adiabatic free expansion of an ideal gas, a more rigorous development of the statistical 

interpretation of entropy would lead us to the same conclusion. 

 

3. Entropy change of mixing gas 

((Kubo, Thermodynamics)) 

Two kinds of ideal gases at equal pressure and temperature, initially separated into 

two containers, are mixed by diffusion. Show that the entropy is increased in this 

process by an amount 
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where n1 and n2 are the moles of components gasses. Assume that no change in pressure 

and temperature occurs due to the diffusion and the partial pressure of each gas in the 

mixture is proportional to the molar concentration. 

 

 
 

Fig. Initial state. Two gases are separated into two containers by a wall. 

 



 
 

Fig. Final state. The wall is removed adiabatically. 

 

Since  

 

0 QU  

 

the temperature does not change (adiabatic free expansion). 

 

((Solution)) 

For the ideal gas, the entropy S is derived as follows, 
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Then we have the entropy S as 
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where we use RCV
2

3
 . 

Here we consider the adiabatic free expansion of two gases independently.  

 

 
 

is the superposition of two states such that 

 

   
 

(a) Adiabatic free expansion of gas-1 into the vacuum space 
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After the adiabatic free expansion for the gas 1 into vacuum space (the right side), we 

have such a state 

 

 
 

Note that 
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(b) Adiabatic free expansion of the gas-2 into the vacuum space 
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After the adiabatic free expansion of the gas-2 into the vacuum space (the left side) 
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The final pressure is 
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(c) Change of entropy for mixing gas 

The change of entropy for the gas-1 
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The change of entropy for the gas-2 

 

)ln(

]ln)ln([]ln)ln([

2

21
2

22222122

V

VV
Rn

TCnVRnTCnVVRnS VV






 

 

The total change of entropy (universe) is 
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which is a positive quantity So the diffusion is an irreversible process.  

 

We use the following notations. 
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nxn 1 , )1(2 xnn   

 

Then we have 
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Fig. Entropy S vs x. We make a plot of 
B

S

Nk


 vs x for 0 1x  .  

 

4. Gibbs paradox 

From the above, we see that the increase of entropy due to diffusion depends only on 

the numbers of moles n1 and n2, but not on their nature, for example, on their molar 

weight. So far as the increase of entropy is concerned, then, it makes no difference 

whether the gases are more or less “similar” chemically. This leads us to make a strange 

inference. If the two gases are assumed to be identical, the increase of entropy is 

obviously zero, because then no change of state occurs at all. This is called the Gibbs 

paradox. 

As understood by Gibbs, this is a misapplication of Gibbs' non-extensive entropy 

quantity. If the gas particles are distinguishable, closing the doors will not return the 

system to its original state - many of the particles will have switched containers. There is 

a freedom in what is defined as ordered, and it would be a mistake to conclude the 

entropy had not increased. In particular, Gibbs' non-extensive entropy quantity for an 

ideal gas was not intended for varying numbers of particles. The paradox is averted by 

concluding the indistinguishability (at least effective indistinguishability) of the particles 

in the volume. This results in the extensive Sackur–Tetrode equation for entropy. 

 

5. Sackur–Tetrode equation for entropy. 

 

(a). Canonical ensemble 

We consider a calculation of the partition function of Maxwell-Boltzmann system (ideal M-B 

particles). The system consists of N particles (distinguishable). 
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The enegy of the system is given by 
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where s ,...,, 21  are the energy levels (quantized, discrete). The total number of particles is 

 

snnnnN  ...321 , 

 

State 1  with energy 1  level n1 particles 

State 2  with energy 2  level n2 particles 

………………………………….. 

State s  with energy s  level ns particles 

 

The way to choose n1 particles with the state 1 , n2 particles with the state 2 , …, and ns 

particles with the state s  from N particles is evaluated as 
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where these particles are distinguishable. Then the partition function for the M-B particles 

(particle number is N) based on the canonical ensemble 
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where Nnnn s  ,...21   means the condition of total particle number kept constant.  We note that 

)(1 CZ  is the partition function for the one particle system. 
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(b) Calculation of )(1 CZ  

Now we calculate the partition function (canonical ensemble) using the density of state for 

the one particle system 
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© N particle system (identical case) 
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Note that 
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The Helmholtz free energy: 
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),,(ln VTZ C   is obtained as 
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The average energy 
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The heat capacity at constant volume: 
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For ANN  , we have RCV
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  , where R is the gas constant.  The heat capacity at constant 

pressure is 
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The entropy S is 
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8. Gibbs paradox (revisited) 

 

We need to use the Sackur–Tetrode equation for the identical gases 
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where C is a constant, and AnNN   

 

 
 

 
 

Fig. The initial state before mixing and the final state after mixing. 

 

The entropy in the initial state before the mixing 
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since RTnPV 11   and RTnPV 22   
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The entropy in the final state after the mixing is 
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since RTnnVVP )()( 2121  . 

 

So we have 
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The Gibbs paradox is no longer a paradox. 

 

9. Problem and solution (I) 

K. Huang 

Introduction to Statistical mechanics 



((Problem 3-6)) 

 
 

((Solution)) 
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Using this equation  
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