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The Sackur-Tetrode equation is important historically, because it suggests quantization (and 

a value for Planck’s constant h) based solely on experimental work in thermodynamics. The 
result provides a basis for quantum theory that is independent of Planck’s first conception of it, 
which he developed in the theory of blackbody radiation, and from Einstein’s conception of 
quantization based on the photoelectric effect. 
 
 
The Sackur–Tetrode equation is an expression for the entropy of a monatomic classical ideal 
gas which incorporates quantum considerations which give a more detailed description of its 
regime of validity. The Sackur–Tetrode equation is named for Hugo Martin Tetrode (1895–
1931) and Otto Sackur (1880–1914), who developed it independently as a solution of 
Boltzmann's gas statistics and entropy equations, at about the same time in 1912. 
 

1. Calculation of )(1 CZ  

Now we calculate the partition function (canonical ensemble) using the density of state for 
the one particle system 
 


































2

2/3

32

0

22
2

3

3

1

2

1

22

)
2

exp(4
)2(

)exp(
)2(

)exp()(

ℏ

ℏ

ℏ


















Tmk
V

mV

m

k
dkk

V

d
V

Z

B

C

k

k

k

k

 

 
2. N particle system (identical case) 

The difficulty encountered in the Gibbs paradox is due to the treatment of the gas molecules 
as individually distinguishable. The interchanging positions of two identical molecules would 
lead to a physically distinct state of the gas. This is not true. In fact, if we treat the gas by 
quantum mechanics, the molecules would have to be regarded as completely indistinguishable.  

The distinguishability of the molecules must be taken into account explicitly in calculating 
the partition function. This can be done by dividing the classical partition function by the 
permutation !N . 



 

 

2/3

2

2/3

2

2/3

2

2/3

22

1

2

!

2!

2!

]
22

1
[

!

)(
!

1
)(

N

B

N

N

B

N

NN

N
N

N

CC

h

Tmk

N

V

Tmk

N

V

m

N

V

m

N

V

Z
N

Z






















































ℏ

ℏ

ℏ

 

 
Note that 
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The Helmholtz free energy: 
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),,(ln VTZ C   is obtained as 
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The average energy 
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The heat capacity at constant volume: 
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For ANN  , we have RCV 2

3
  , where R is the gas constant.  The heat capacity at constant 

pressure is 
 

RRCvCP 2

5
 ,  (Mayer’s relation) 

 
The entropy S is 
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  (Sackur-Tetrode equation) 

 
The pressure P is 
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3. Gibbs paradox 

We need to use the Sackur–Tetrode equation for the identical gases 
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where C is a constant, and AnNN  . The entropy of the system indeed becomes a true 

extensive quantity. Thus the very root of the trouble has been eliminated by the recipe 
of Gibbs.   
 

 
 



 
 
Fig. The initial state before mixing and the final state after mixing. 
 
The entropy in the initial state before the mixing 
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since RTnPV 11   and RTnPV 22   
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The entropy in the final state after the mixing is 
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since RTnnVVP )()( 2121  . So we have 

 

fi SS  . 

 
The Gibbs paradox is no longer a paradox. No entropy changes  
 
4. Comment by Huang 

Gibbs resolved the paradox in an empirical fashion by postulating that we have made an error 
in calculating the partition function. Gibbs assumed that  correct answer is !N  times smaller than 

we thought it was. It is not possible to understand classically why we must divide  NCZ 1  by !N  

to obtain the correct counting of states. The reason is inherently indistinguishable in the 
following sense. A state of the gas is described by an N-particle wave function, which is either 
symmetric or antisymmetric with respect to the interchange of any two particles. A permutation 
of the particles can at most change the wave function by a sig, and it does not produce a new 

state of the system, From this fact it seems reasonable that we should divide  NCZ 1  by !N . 

 
5. Calculation of entropy using the Sackur-Tetrode equation 

Calculation of entropy for argon, neon and helium gas at T = 300 K and P = 1 atm. We use 
the Sackur0Tetrode equation. 
 

S(Kr) = 164.106 J/(K mol) for krypton gas 
867.154)( ArS  J/(K mol) for argon gas 

35.146)( NeS  J/(K mol) for neon gas 

174.126)( HeS  J/(K mol) for helium gas 

 



 
 
 
6. Entropy of neon at 27.2 K (Kittel) 

We consider the phase transion on Ne at P = 1 arm.  
(i) Solid (for 0 K<T<24.55 K) 
 

29.14solidS  J/(mol K) . 

 
(ii) Melting point T= 24.55 K. The entropy of melting is 
 

64.13
55.24

335
 meltingS  J/(mol K) 

 
(iii) Liquid (24.55<T<27.2 K) 
 

Clear "Global` " ;
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85.3liquidS  J/(mol K) 

 
(iv) Vaporization at T= 27.2 K. The entropy of vaporization is 
 

62.64
2.27

1761
 onvaporizatiS  J/(mol K) 

 
So the experimental value of entropy of neon gas at 27.2 K at 1 atm is 
 

onvaporizatiliquidmeltingsolidgas SSSSS   = 96.40 J/(mol K) (experiment) 

 
The calculate value of the entropy of neon at 1 atm at 27.2 K is 
 

gasS 96.4515 J/(mol K)  from Sackur-Tetrode equation) 

 
There is an excellent agreement between the experiment and theory 
 
((Mathematica)) 

 
 
7. Entropy of Kr 

 
From 
Francisco Jos ́e Pa ̃nos Exp ́osito 
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The Sackur-Tetrode equation and the measure of entropy 
http://diposit.ub.edu/dspace/bitstream/2445/59903/1/TFG-Pa%C3%B1os-
Exp%C3%B3sito-FranciscoJos%C3%A9.pdf 
 

T(solid-liquid)= 115.77 K (Kr) 
T(liquid=gas) = 119.93 K )Kr) 

 

 
 
Fig. Heat capacity of krypton as a function of temperature. 
 



 
 
Fig. Entropies as a function of temperature for Ne, Ar, Kr, and Hg. 
 

002.0)1( KS  J/(mol K) 

 
518.3)121(  KKS  J/(mol K) 

 
712.49)77.11512(  KKS  J/(mol K) 

 

166.14
775.115

1640
 meltingS  J/(mol K) 

 
500.1)81.11977.115(  KKS  J/(mol K) 

 

787.75
81.119

9080
 onvaporizatiS  J/(mol K) 

 



So the experimental value of entropy of krypton gas at 119.81 K at 1 atm is 
 

onvaporizatiliquidmeltingsolidgas SSSSKrS )(  = 144.683 J/(mol K) 

 
The calculate value of the entropy of krypton at 1 atm at 119.81 K is 
 

gasS 145.048 J/(mol K)  from Sackur-Tetrode equation) 

 
There is an excellent agreement between the experiment and theory. 
 
8. Problem and solution (I) 

K. Huang 
Introduction to Statistical mechanics 

((Problem 3-6)) 
A mixture of two ideal gasses undergoes an adiabatic transformation. The gases are 
labeled 1, 2. Their densities and heat capacities are denoted by jn , VjC , PjC  (j = 1, 2). 

Show that the pressure P and volume V of the system obey the constraint 
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((Solution)) 
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Using this equation  
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Putting  RTnnnRTPV )( 21   

 

constantPV  
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______________________________________________________________________________ 
APPENDIX-I 

 
APS (American Physical Society) News: This month in Physics History 

September, 1911–The Sackur-Tetrode Equation: How Entropy Met Quantum Mechanics 
 

https://www.aps.org/publications/apsnews/200908/physicshistory.cfm 
 
Editor’s note: This month’s column has been contributed by guest author Richard Williams. 

Early in the twentieth century, leading physicists were struggling to get a deeper 
understanding of the concept of entropy. Entropy is at the heart of the all-encompassing Second 
Law of Thermodynamics and can be used to establish the absolute temperature scale, so it needs 
to be fully understood. But a troubling question remained unanswered. Could its absolute value 
be determined, or would it always involve an unknown additive constant? 

Attention began to focus increasingly on Ludwig Boltzmann’s ideas. His long work on the 
problem is summarized in S = kB lnW, that is carved on his tombstone in Vienna. The equation 
expresses entropy, S, as the logarithm of W, the number of possible states of motion available to 
the atoms in a system, consistent with their energy, and multiplied by the constant, kB, named for 
Boltzmann. However, according to classical theory, there was no limit to how close to one 
another, in momentum and space, the neighboring states of motion could be, and, therefore, no 
limit to the number of states that could exist. How then could W be enumerated to give a unique 
result? Thus, the question about the arbitrary additive constant. 

The answer would come in two separate articles in the premier German physics journal, 
Annalen der Physik, one published in September, 1911, and the other a few months later. One 
author was Otto Sackur, 31 years old, a rising young physical chemist at the University of 
Breslau. The other was Hugo Tetrode, 17 years old, the precocious son of the president of the 
Dutch National Bank. Both focused on how to count the number of possible distinguishable 
states of motion of the atoms of a monatomic gas. In similar, but not identical, analyses, they 
argued that the number of allowed states in a given energy range depended on how close the 
states of motion could get to one another–in position and momentum, for example. They 
considered pairs of coordinates that define the motion of atoms, either momentum and position, 
or energy and time. If a lower limit existed for the possible size of the elements of the space 
representing the pair of coordinates, this would give an upper limit to the magnitude of W, and 
allow a definite count to be made. 

Tetrode started with an equation from the classical statistical mechanics of J. Willard Gibbs. 
He required the product of the elements, momentum–position, to be not smaller than Planck’s 
constant. Sackur adhered more to the style of Max Planck’s school of thermodynamics. By 
similar reasoning, he limited the spacing of the allowed states for the elements, energy–time. 



This, together with Boltzmann’s Equation, gave them an expression for the absolute entropy, the 
Sackur-Tetrode equation. 

Their equation can be used today without modification to calculate the standard entropy for 
ideal monatomic gases. Knowing only the temperature, pressure, and atomic weight of the atoms, 
an extremely simple calculation gives the entropy value so accurately that the calculated value is 
preferred to experimental values in tabulations of best values of thermodynamic data, such as the 
CRC Handbook of Chemistry and Physics. After his work on this problem, Tetrode wrote some 
other theoretical papers, but none achieved comparable recognition. He lapsed into scientific 
obscurity, little remembered even among the community of Dutch physicists. In 1932, his 
compatriot, the physicist H.G.B. Casimir, spent a year as an assistant to Wolfgang Pauli at the 
Technische Hochschule in Zurich. Once, Pauli goaded him, “You Dutch people are strange birds. 
You have the example of Tetrode. He has done outstanding work, but no one knows about him, 
and it seems that no one wants to know.” Casimir realized that he, too, knew little about 
Tetrode’s life, and he began to learn more about it. In 1984 he wrote an article summarizing 
Tetrode’s life, entitled, “A Forgotten Genius.” Tetrode’s higher education was brief, obviously at 
17 years of age, when he wrote his article for Annalen, but also, later, his education was irregular 
for a scientist. He spent 1912 at the University in Leipzig, but apparently attended few lectures 
and did not take the usual exams. He corresponded with the major Dutch physicists at times, but 
did not form lasting scientific relationships. Nor did he cultivate those who might advance his 
scientific career. At one point, Albert Einstein and Paul Ehrenfest called at his home, but the 
maid told them that he could not receive them. He died of tuberculosis in 1931. 

Sackur’s career advanced more along the normal course for a scientist. After his doctorate 
from the University of Breslau, he worked there with Rudolph Ladenburg, then in London with 
William Ramsay, and finally in Germany with Walther Nernst, whose heat theorem was at the 
center of efforts to resolve the concept of absolute entropy, leading eventually, with some help 
from the work of Sackur and Tetrode, to the Third Law of Thermodynamics. Sackur wrote well-
received books on thermodynamics, and in 1914 he joined Fritz Haber’s prestigious Institute in 
Berlin. Haber’s reputation at the time was golden, after his stunning achievement of the fixation 
of nitrogen from the air to form ammonia. It would bring him the Nobel Prize. His reputation 
began to suffer when he led Germany’s project to use poison gas as a weapon in World War I. 
He focused the Institute’s work on this project, bringing in Sackur, James Franck, and others. In 
late 1914, Sackur was killed in a lab explosion, prematurely ending a promising career. But this 
was not all. Haber’s wife, Clara Immerwahr, was a close personal friend of Sackur. She opposed 
Haber’s poison gas work on moral grounds and had long protested bitterly. When she learned of 
Sackur’s death, from what she saw as coerced work on an immoral project, she was inconsolable. 
Finally, distraught, she committed suicide, using her husband’s service pistol, completing a 
tragedy of Shakespearean dimensions. 

Otto Sackur and Hugo Tetrode died too young, victims of the scourges of their time, 
tuberculosis and war. Despite their disparate backgrounds, they, like Boltzmann, left an equation 
as an epitaph, one that endures and joins them together. 
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