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Here we discuss the method of canonical ensemble, which is much simpler than that of
microcanonical ensemble. We show that both methods are equivalent. In other words, the same
results are derived using two methods.

1. Thermal equilibrium
We consider the number of accessible states of two systems in thermal contact, with constant
total energy,

E=E +E,

Thermal contact

The multiplicity g(N,E) of the combined system is

g(N,E)= Zgl(Nl’El)gZ(N2’E_E1)

E\<E

The largest term in g (N, E) governs the properties of the total system in thermal equilibrium.
For an extremum, it is necessary that the differential of g(N,E) be zero for an infinitesimal

change of energy.
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The thermal equilibrium condition is
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which may be written as
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We define the entropy S as
S(N,E)=kyIng(N,E)

We write Eq.(1) in the final form
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This is the condition for thermal equilibrium for two systems in thermal contact.

2 Temperature
The last equality leads to us to the concept of temperature. In thermal equilibrium, the
temperature of the two systems are equal.
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So that 7" must be a function of ) If T denotes the absolute temperature in K, this function
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is simply the inverse relationship,
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((Note))

What is the difference between the expression
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and the expression
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These two expressions have a slightly different meaning. In Eq.(1), S is given as a function of the
independent variables £ and N as S(E,N) . Hence T has the same independent variables

T=T(E,N).InEq.(2), E=E(S,N). So that T =T(S,N). The definition of temperature is the

same in both cases, but it is expressed as a function of different independent variables.
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3. Canonical ensemble(system with constant temperature)

The theory of the micro-canonical ensemble is useful when the system depends on N, E, and
V. In principle, this method is correct. In real calculations, however, it is not so easy to calculate
the number of states W(E, OF) in general case. We have an alternative method, which is much
useful for the calculation in the real systems. The formulation of the canonical ensemble is a little
different from that of the micro-canonical ensemble. Both of these ensembles lead to the same
result for the same macro system.

Canonical ensemble: (V, 7, V, constant)

Suppose that the system depends on N, 7, and V. A practical method of keeping the temperature
of a system constant is to immerse it in a very large material with a large heat capacity. If the
material is very large, its temperature is not changed even if some energy is given or taken by the
system in contact. Such a heat reservoir serves as a thermostat.
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Fig. System one (one quantum state) and system II (thermal bath, reservoir).

We consider the case of a small system S(I) in thermal contact with a heat reservoir (II). The

system S(I) is in thermal equilibrium with a reservoir W(II). S(I) and W(II) have a common
temperature 7. The system S(I) is a relatively small macroscopic system. The energy of S(I) is not
fixed. It is only the total energy of the combined system.

ET :EII+E;'

We assume that Wn(En) is the number of states where the thermal bath has the energy En. If S(I)
is in the one definite state ‘l> , the probability of finding the system (I) in the state ‘l> , 18
proportional to Wi(Emn). The thermal bath is in one of the many states with the energy Et - E;

JZRS VZI(E}I) = VZ](ET _E)
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((Note)) Taylor expansion

f(x) = IH[VVH (E11 )] = ln[VVH (ET _E,')] = ln[VV}1 (ET _x)]

with
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Then we obtain
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Here we notice the definition of entropy and temperature for the reservoir as the micro-canonical
ensemble:

Sy =kylnW,(Ey,)

and
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In thermal equilibrium, we have
Iy, =T=T

Then Eq.(1) can be rewritten as

E
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where = 1/(ksT). This is called a Boltzmann factor. We define the partition function Z as

Z:(P)= Ze_ﬁEi

Quantum mechanical approach

|Es> | | |E2> || IE3> | | |E4> | | |E5>

Fig. Canonical ensemble

Here we use the quantum mechanical description to explain the canonical ensemble.



H | i> = E,|l> (Eigenstate in the quantum mechanics, quantum state)
The probability is given by

p,=[(ilw)

where H is the Hamiltonian of the system. The letter Z- is used because the German name is
“Zustandssumme.” (sum over states). The probability is expressed by

1
E)=—>°"
p(E) 7.

The summation in Z is over all states ‘l> of the system. We note that
D P(E)=1
The average energy of the system is given by
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In summary, the representative points of the system I are distributed with the probability density
proportional to exp(-fEi). This is called the canonical ensemble, and this distribution of



representative points is called the canonical distribution. The factor exp(-fE;) is often referred to
as the Boltzmann factor. The energy E; is dependent on 7.

((Note)) R. Baierlein Thermal Physics

1
E)=—:¢"
p(E) Z

This probability distribution, perhaps the most famous in all of thermal physics, is called the
canonical probability distribution, name introduced by J. Willard Gibbs in 1901. (The adjective
“canonical” is used in the sense of “standard.)

((Example)) Blundel-Blundell Problem 4-3
Blunde-Blundell Problem 4-3

(4.3) A system comprises N states which can have energy
0 or A. Show that the number of ways Q(FE') of ar-

ranging the total system to have energy E = rA
(where 7 is an integer) is given by
N!
Q(FE) = (4.33)

rl(N —r)!l"

Now remove a small amount of energy sA from the
system, where s < r. Show that
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and hence show that the system has temperature T’
given by
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Sketch kT as a function of r fromr =0tor=N
and explain the result.

((Solution))
We consider the two states with energy 0 and energy A . Suppose that the system consists of
N particles. Each particle takes one of these two energy states.



N=N,+N,
The total energy of the system is
E=0N,+AN, =rA

Then we have

The number of ways is

N!
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For small amount of &€ =sA (s << r)
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— Q(E =rA) (r=D(Fr=2)...(r—s+1)

(N=r+1)(N—-r+2)..(N—r+s)

N

(N =r)

~Q(E =rA)

or

Q(E — &) = Q(E) exp[—iln( N r_ ”j]

Note that

N

O
(N-7)

(1)
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leading to the expression

X =exp[—s ln(N_ rj] = exp[—iln(N_ rj]
r A
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Using the Taylor expansion, we have

InQ(E-&)=InQ(F) -
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From Egs.(1) and (2), we get
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Using the Mathematica, we make a plot of y as a function of x.
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Fig. Plotof y= kT as s function of x = — .
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4. Canonical ensemble: Boltzmann factor
(Kittel, Thermal Physics)

We consider the case of a small system § in thermal interaction with a heat reservoir R. We
assume that the system § is in thermal equilibrium with a reservoir R. S and R have a common
temperature 7 (given). The total system (R+S) is a closed system. We assume weak interaction
between R and §. So that their energies are additive. The energy of the system § is, of course, not
fixed. The total energy of the combined system (R+S) is constant Eo. The energy conservation can
be written as

E+E=E

total



S
Ei-E; E,
9(E:-Ey) one state

The system is in a quantum state 1, and the reservoir R has

&, —E)

states accessible to it. The system is in a quantum state 2, and the reservoir R has
8r (Et - Ez)

states accessible to it.

S
E;

E:-E;

g(E¢-E>) one state




Fig. The system is in quantum state ‘E1> The reservoir has Zp(F —F) accessible quantum

states

The probability P(E) is proportional to the number of accessible states of the reservoir when

the state of the system is exactly specified. If we specify the state of .S, the number of accessible
states of R:

g(R+S8)=g(R)x1
Thus the probability P(E;) is proportional to the number of accessible states of the reservoir,
HE) e gp(E,~E).

Thus

P(E)) _ g (E -E)
P(E)) gi(E —E,) .

By definition of entropy,
SelE, =) =ky In[g, (B~ E))]
Se(E, —E,) =k, In[ g, (B, — )]

So that the probability ratio may be written as

1
P(E) eXp[ESR(Et —E)]

P(E,)

1 = exp[kiASR].
eXp[kf Sp(E, — E))] 8

B

Here the entropy difference AS, is
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We know that
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Then the entropy difference is
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Finally we have

P(E)) _ exp(—pE)
P(E,) exp(—ﬁEz)'

with

1
=it

—F
A term of eXp(ﬁ) is called a Boltzmann factor. It gives the ratio of the probability of finding
B

the system in a single quantum state ‘E1> to the probability of finding the system in a single

quantum state ‘ E2> )

S Pressure
The pressure P is defined as



poyp e L (OB L 102 107,
T L Z Z.Bpov B ov

Here we define the Helmholtz free energy F as
F=E-ST.

dF =dE - SdT - TdS
=TdS — PdV — SdT - TdS
=—PdV - 8dT

Fisafunctionof Tand V;  F = F(T,V).From the equation of dF, we have
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((Note)) Notation 4 for the Helmholtz free energy

The Helmholtz free energy was developed by Hermann von Helmholtz, a German physicist, and
is usually denoted by the letter 4 (from the German “Arbeit” or work), or the letter . The IUPAC
recommends the letter 4 as well as the use of name Helmholtz energy.

6. Helmholtz free energy and entropy
The Helmbholtz free energy F'is given by

F=-k,TInZ,
((Proof))
We note that
oF
o F o sSToF_ U0,
oT ' T T2 T2 T2 Por ¢

which leads to

F=-k,TInZ,

What is the expression for the entropy S in a canonical ensemble? The entropy is given by



where U is the average energy of the system,

olnZ,
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Then entropy S is rewritten as

S= —lalg[fc +kyInZ,

T
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= B,BZE +k InZ,.
= kBZIBE[pi + kB InZ.

=ky Y (-Inp,—~InZ.)p, +kyInZ,
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=—k; > pInp,

or

S= _szpi Inp,

where p;j is that the probability of the ‘l> state and is given by

-
=—e 7
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The logarithm of p; is described by
Inp, =—pE —InZ

Here we have



S= _kBZpl Inp, = _szpl(_lBEi —InZ.)

=—ky(-pU -InZ.)

= % +ky,InZ,
or
TS=U+k,TInZ,
or
F=U-ST=—k,T'nZ,.
((Note))

We finally get a useful expression for the entropy which can be available for the information
theory.

S=—ky) pInp,.

((Example))
Suppose that there are 50 boxes. There is one jewel in one of 50 boxes. p; is the probability of
finding one jewel in the i-th box for one trial.

(a) There is no hint where the jewel is.

50 1 1
S=—k,> p,/Inp, :—kBZ%m(%) =391k,

s=1
(b) There is a hint that the jewel is in one of the box with even number.

pP1=p3=.....= ps=0

1
2=pa=.....= pP5so=—
p2=p ps 25

11
S=—kyY . pnp =—k; > Eln(g) =3.21%,

s=even

(c) If you know that the jewel is in the 10-th box,



pio=1
ps=0 (s #10)

S=~kyp,oInp,, =0

If you know more information, the information entropy becomes smaller.

7. The method (Fermi)

I found very interesting method for the derivation of the expression entropy S and the
Helmbholtz free energy F in the book written by Enrico Fermi, one of the greatest scientists in the
world.

E. Fermi, Notes on Thermodynamics and Statistics (University of Chicago, 1966).

According to his book, we start with the expression

dU =TdS — PdV = d(TS)— SdT — PdV

or
d(U-TS)=dF =-8dT — PdV
with
F=U-S8T or Szg—ﬁ
Tr T
Note that

ds :ldU+£dV
T T

At constant V, we get
ds :%dU =k, BdU =k,[d(pU)-Ud f]

Using the relation

U=—ian
op

we have



s=] %dU
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)
S=kBﬁU+kBj£(1nZ)dﬁ
=k, U +k,InZ

=%+kBInZ
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£
T

S|
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The Helmholtz free energy is

The entropy S is

This expression of S can be also derived as
5= _(6_F]
orT ),
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7. Application



7.1.  Partition function Zc for ideal gas system
The partition function Z for the ideal gas can be calculated as

N

V o0
ZCN: N!h3N [ J. dpexp(_

VN

)]3N

p
2mk,T

272mk T
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where M is a factor coming from indistinguishable particles (Gibbs paradox). Note that

1
Loy = W(ZQ)N .

Z, is the one-particle partition function.

2 2 2
4 p. +p, +p,
Ze= ][ dp.dp dp. exp(- k)
2 2 © 2
d, - d, - e
[j p.exp(—— kT)j p, exp( kBT>jw cexp(- - kT)]
2
d _ 3
[j p, exp(-— kT)]
- V(—szfBT)”

In other words, many-particle problem reduces to one particle problem. Using this expression of

Zy, the Helmholtz free energy F can be calculated as

F =—k,TInZ,, = Nk,T[-In (;)——1 (2’””k o7

)11

The internal energy E is

U:_GanCN ZENkBT
op 2
The entropy S is
E-F V 5
S—T—Nks[ln(ﬁ) 51 (2 o ) 5]-

The pressure P is



Nk,T

Boyle’s law).
% (Boy )

oF
P:—— =
(aV)T
or
pr=2u
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7.2.  Partition function Zc for photon gas system
We consider the photon gas system with the energy dispersion € = ¢p . The N-photon partition

function is given by

1
Zey = _(Za )N .
N

Z, is the one-photon partition function and is given by

the Helmholtz free energy F can be calculated as

F=—k,TInZ.,

87

el

Z. ) v
= —kBTln% = —NkBT[lnN+ 3In(k,T) + In(
where
V 87
anCN = N[lnﬁ+3ln(kBT)+ln(W)+l] .

The internal energy E is

0lnZ,,
op

U=

=3Nk,T

The pressure P is
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or
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7.3 Maxwell’s distribution function
The Maxwell distribution function can be derived as follows.

2
my

2k,T

n(v)dv = n(v)4m’dv = f(v)dv = Aexp(— Y4y dv

The normalization condition:
[n(v)dv = [n(mydm’dv = [ f()av =1

The constant 4 is calculated as

3/2
4= _
27k, T

Then we have

IR 5 mv
Ji (V)=4”(2 7szTJ 14 eXP(—M).

Since M = m Na and R = Na ks, we have

2

f(V)=(L) 4 exp(- 22V

27RT 2RT

which agrees with the expression of f{v) in Chapter 19.

((Mathematica))



-m v2

fl = Integrate[Exp[ ] 4 7rv2, {v, 0, =},

2kBT

GenerateConditions -> False]

22 732
(L)3/2
kBT
eql =Afl ==1;
Solve[eql, 2]
( n )3/2

kBT

H“m}}

8. Comparison of the expression of § in the canonical ensemble with the original
definition of S in the microcanonical ensemble

The partition function Z can be written as

Zo=Y et = jQ(E)e—/’EdE

i

The partition function Z.(f) is the Laplace transform of the density of states, Q(¢) . The density

of states Q (&) is related to the partition function Z.(f), through an inverse Laplace transform,
1 ﬂ*+[oo
Q(E) = Py "7 .(B)dp (Bromwich-Wagner integral)
i
p —ion
where " >0.
Here we define the function y(E) by

w(E)=Q(E)e ",

The function e ”* decreases with increasing E while Q(E) increases with increasing E.



We assume that y (E) has a local maximum at £ = E”

| ZGZIHV/(E)|
OE P2l OE*  EF

Olny(E) +i

Iny(E)=Iny(E)+(E-E") (E-E")

We choose E” and o, such that

Olnwy(E)

| PhyE) 1
OE  F°E

.=0 . _—
| OE* ¥ 2(o, )2

Thus we have

1

o)

Iny(E)=Iny(E") - (E-E')

W(E) can be approximated by a Gaussian function

(E-E)

2(0;)° :

w(E)=y(E )exp[-

where

w(E")=Q(E")exp(-pE’)



-
Fig. W(E) vs E. y(E) has a Gaussian distribution with the width &, around E = E~

Since

diny(E) _dnQ(E)

dE dE d
we have
dlnl//(E)| - dan(E)| _B=0
dE  *°F dE *F
or
dInQ(E)

Pl

Here we define the number of states W (E,SE) by
W(E,0E)=(E)SE =270, Q(E")
with
O0FE = \/ZGE*.

Then we have



dInW (E,SE) o
s
since

InW(E,SE)=InQ(E")+InSE

oW (E,SE), _ 0lnQ(E)

OE i OE ps=F

with fixed O E . We note that

Z, = j w(E)dE
e f s (E-E)
=y(E ){eXp[ 2o WE
=y (E'W270o,

= \276,Q(E ) exp(-BE")
where

T (E-E). ..
{ﬂo—E NP

Then we have
InZ.=In[N27c,QE")]-pE

We note that

. 1oz,

(1)

(Gaussian distribution)

olnZ,

F=-k,TInZ,, E=E =

The entropy S is calculated as

Z. 0f

op



s-E_F
r T
~10lnZ,
T op

+ky,InZ,

%

= ET +ky In[\ 270, Q(E")] - ET (2)

=k, In[270 . Q(E")]
=k, InW (E,JE)

Using Egs.(1) and (2), we get

oS 1
=k B==
OE af T
or
OInW(E,0E) _ 1
OE T

In other words, the thermodynamic properties derived from the canonical ensemble is equivalent
to those from the microcanonical ensemble. Since the calculations for the microcanonical
ensemble is much more complicated compared to those for the canonical ensemble, it is suggest
that one may choose the method of canonical ensemble if it is allowed.

((Note-1)) Expression for Q(E)

(E-E)

w(E)=e " Q(E )exp[- 2(0,)

1=e ™ Q(E)

or

(E-E)’

QE) = QE ) exp[ (E - E") - 2o,

This function takes a maximum at
E=E +pfo,”.

9. Boltzmann-Planck’s method
Finally we show the standard method of the derivation, which characterizes well the theory of
canonical ensembles.
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Fig. Canonical ensembles with the states (E1, Ea, ...). £, =E+E,+... = constant. M;

ensembles for the energy E1, ,M> ensembles for the energy E», and so on. In general, M;
ensembles in the energy level Ej.

We consider the way of distributing M total ensembles among states with energies Ej. Let M
be the number of ensembles in the energy level Ej; M ensembles for the energy Ei, the M-

ensembles for the energy E», and so on. The number of ways of distributing M ensembles is given
by

!
W:L
MM,\...
where
dM, =M

and the average energy <E > is given by

M .
<E> - ZP(E_/)EJ - ZE/‘_/
J J M
We note that the probability of finding the system in the state | ]> is simply given by

J

M
PE) =~

The entropy S is proportional to InW,

InW =InM'-) In(M!)
J

Using the Stirling's formula
InW =M(InM-1)-Y M (InM,-1)
j

=MInM-) M,InM,
J

in the limit of large M and M. Then we have



1 1
—InW=InM-—>» M.InM.
M MZ‘ / /

1
=InM —MZMP(Ej)ln[MP(Ej)]
J
=InM =) P(E;)In[P(E,)+InM]
j
== P(E)In[P(E))]
j
which is subject to the conditions
ZP(EJ) =1, ZEJ.P(EJ) =(E)
J J
Treating P(Ej) as continuous variables, we have the variational equation
S[> P(E,)InP(E,)+aP(E,)+ BE,P(E))
j

= Z{lnP(EjH(a+1)+ﬁ’EjP(Ej)} =0

which gives P(Ej) for the maximum W. Here « and f are Lagrange’s indeterminate multipliers.

Thus we obtain

InP(E;)+(a+1)+GE; =0

or
P(E,) = Cexp[-BE,]
or
1
P(E))= 75 exppE;)
where

Z(B) =Y exp(HE))



and

B=1/ksT.
With the above P(E)), the entropy S is expressed by

S=kylnW
= —Mk, Y P(E,)In[P(E)]

for the total system composed of M ensembles. Therefore, the entropy of each ensemble is

S =—k; Y P(E)In[P(E))]

10.  Density of states for quantum box (ideal gas)
(a) Energy levels in 1D system
We consider a free electron gas in 1D system. The Schrodinger equation is given by

2 2 2
p 7 dy,(x)
Hy, (x)= x)=-— =gy, (x 1
¥, (x) 2ka( ) o di Wi (X)), (1)
where
_hd
i dx’

and & is the energy of the particle in the orbital.

The orbital is defined as a solution of the wave equation for a system of only one
electron: ((one-electron problem)).

Using a periodic boundary condition: ¥/ (X +L) =Y, (X) , we have

W, (x)~ €™, )

with

2 2 2
-t 2],
2m 2m\ L

e™ =1 or k:z—ﬂn,



where n =0, £1, £2,..., and L is the size of the system.

(b) Energy levels in 3D system
We consider the Schrodinger equation of an electron confined to a cube of edge L.

2 hZ
Hy, :I)_Wk =——Vy, =5y, 3)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. Boundary
condition (Born-von Karman boundary conditions).

l//k(x"_ L,y,Z) =l//k(xayaz) ’
vi(x,y+L,z)=y,(x,,2),

l//k(xay>Z+L) =l//k(x5yaz) *

The wavefunctions are of the form of a traveling plane wave.

wi(r) =", )
with

kx = (2n/L) nx, (nx =0, =1, £2, £3,.....),

ky = 2n/L) ny, (ny =0, £1,+2,£3,....)),

k.= Q2n/L) ny, (n,=0,£1,£2,£3,.....).

The components of the wavevector k are the quantum numbers, along with the quantum number
ms of the spin direction. The energy eigenvalue is

hz 2 2 2 hz 2
g(k)zg(kx +ky +k, )=%k ) (5)
Here
7]
pl//k(r)=7Vka(r)=thk(r)- (6)

So that the plane wave function y, (r) is an eigen-function of p with the eigenvalue 7k. The

ground state of a system of NV electrons, the occupied orbitals are represented as a point inside a
sphere in k-space.



(¢) Density of states

Because we assume that the electrons are non-interacting, we can build up the N-electron
ground state by placing electrons into the allowed one-electron levels we have just found. The one-
electron levels are specified by the wave-vectors k& and by the projection of the electron’s spin
along an arbitrary axis, which can take either of the two values +4/2. Therefore associated with
each allowed wave vector k are two levels:

k1),

k,¢>.

i
V'@

Fig. Density of states in the 3D k-space. There is one state per (2m/L)’.

There is one state per volume of k-space (277/L)°. We consider the number of one-electron
levels in the energy range from ¢to et+deg; D(¢)de

r >
ID(g)dg—Wj4ﬂk dk (13)

where D(¢) is called a density of states.



11. Application of canonical ensemble for ideal gas
(a) Partition function for the system with one atom; ZCl
The partition function Zc; is given by

s’
Z.. =Y exp(-——k
cl Zk: p( m )

LI5S
2m

Gy ke

4
~(27)

B 4 \/;Ca/z

8’

2
j A7 dk exp(—ﬁkz)
2m

where V =L°,

2
C= ﬁ ’ L= L
2m k,T
((Mathematica))

Clear["Global *"];

\'4
fl= —— 4 7 k2 Exp[—Cl k2] ;
(2 )
Integrate[fl, {k, 0, »}] //

Simplify[#, C1 > 0] &

\

8 Cl3/2 7_(3/2

Then the partition function Z, can be rewritten as

vz v mhk,TY"
Zo = 2 32 i 32 = 2 =ny
87’
2mk,T mk T

where 1, is a quantum concentration and is defined by



o mk,T 3/2
¢ 2 ’

nq is the concentration associated with one atom in a cube of side equal to the thermal average de
Broglie wavelength.

Fig. Definition of quantum concentration. The de Broglie wavelength is on the order of
interatomic distance.

L
)

where <V> is the average thermal velocity of atoms. Using the equipartition law, we get the

relation

3k, T
%m(v}z =%kBT, or <v>:1{73,

Then we have

27h 27h 27h 27 | 27h° 1 1
A= = A =\/— i = T W=1447Tz 173
m<v> m\/3 v 3\/m v mk n, ng

m

where



o kaT 3/2
¢ 27h*

It follows that

((Definition))

n . .
— <1 — classical regime

"y

An ideal gas is defined as a gas of non-interacting atoms in the classical regime.

((Example))
“He gas at P =1 atm and T = 300 K, the concentration 7 is evaluated as
n= o b 5 446%10° e’
V. kT

The quantum concentration nq is calculated as

ny,=7.8122x10"/cm’

which means that 7<<7, in the classical regime. Note that the mass of “He is given by

m=4u =6.6422 x107* g.
where u is the atomic unit mass.

((Mathematica))



Clear["Global *"];

rulel = {kB - 1.3806504x107'°,
NA -» 6.02214179x 10%,
h->1.054571628 1077,
amu - 1.660538782x 1072,
atm - 1.01325x10°};

Tl =300; P1=1atm /. rulel;

ml =4 amu /. rulel

6.64216%x 102"

(mlkBTl
ng= | ———=

3/2
2 2 ) /. rulel
bis

7.81219x 10%*

P1
nl = XB T1 /. rulel

2.44631x10°

(b) Partition function of the system with N atoms
Suppose that the gas contains N atoms in a volume V. The partition function Zx, which takes
into account of indistinguishability of the atoms (divided by the factor N!), is given by

_z"
NN

Using Z =nyV, we get

InZ, = Nln(nyV)—InN!
= N[In(ny V) +1-1In N]

where we use the Stirling’s formula

N~ NInN-N=N(nN -1),



in the limit of large N. The Helmholtz free energy is given by

F=—k,TInZ,
= —Nk,T[In(n,V') +1~In N]

Nk Ty 11
=Nk, TTin("2

ny
= —Nk, T In(=2) = Nk, T

=—-Nk T[ln£+§lnT+
N 2

since

ln(—)—l [(’”k fj K]=1nK+31nT+31n( ’”kgjﬂ
2 ) NN 2 2\ 2k

The entropy S is obtained as

{5
oT ),
VvV 3 3 5
= Nky[In—+—InT + +—
ol N 2 2 2]
VvV 3
= NkB(an +51HT + O'O)
where
5 3 mk
= — —1 B
Q=55 ( 2 7th? )
Note that S can be rewritten as
nQ 5 )
S = Nk, ln—+5 Nk, (Sackur-Tetrode equation)
n

((Sackur-Tetrode equation))

The Sackur—Tetrode equation is named for Hugo Martin Tetrode (1895-1931) and Otto
Sackur (1880-1914), who developed it independently as a solution of Boltzmann's gas statistics
and entropy equations, at about the same time in 1912.
https://en.wikipedia.org/wiki/Sackur%E2%80%93Tetrode equation




n,
. . n
In the classical region (— <<1 or 2 >>1), we have
n n
0

2 >0
n

The internal energy E is given by

E=F+S8T
ny ng 5
= —NE, T (") = Nk, T + Nk, T In =2 + = Nk, T
n n
3
== ENkBT

Note that £ depends only on 7 for the ideal gas (Joule’s law). The factor 3/2 arises from the
exponent of T in 7, because the gas is in 3D. If 73, were in 1D or 2D, the factor would be 1/2 or

2, respectively.

(¢) Pressure P
The pressure P is defined by

p:_(Ej _ Nk, T
o). v

leading to the Boyle’s law. Then PV is

PV = Nk,T = 2TE (Bernoulli’s equation)

(d)  Heat capacity
The heat capacity at fixed volume V' is given by

CVzT(a—SJ 3 Nk,
or), 2

When N = N, we have
C,==R.

() 1s the heat capacity at constant P. Since



dE =TdS — PdV
or
1dS =dE + PdV

then we get

o)) 43
v~ \eor), \or) ~“\or),

%ngPM%=M@:R
p

oT P

We note that
E= %NAkBT .

E is independent of P and V, and depends only on 7. (Joule’s law)

()] -t
or), \or), 2

Thus we have

CP=CV+R=%R+R=§R
((Mayer’s relation))
C,=C,+R for ideal gas with 1 mole.

The ratio yis defined by
G 5
7/:—13 =—.
G 3

(e) Isentropic process (constant entropy)
The entropy S is given by

S = NkB(ln%+%lnT+00) = NkB[ln(VTm)—lnN +0,]



The isentropic process is described by
VT*'*=const, or TV *3 =const,
Using the Boyle’s law ( PV = RT ), we get

%V” =const,, or PV *'? =const

Since y=5/3, we get the relation
PV”= constant

12. The expression of entropy: S =k, In W (E)

The entropy is related to the number of states. It is in particular, closely related to In/¥. In
order to find such a relation, we start with the partition function

Z. = ;exp(—ﬂEa) =
- j dEW (E)exp(-fE)
= [dE exp[in W (E)]exp(-BE)
- j dE exp[InW (E) — BE]
- j exp[-Npf 1dE

where W (E) is the number of states with the energy E. The function £ (E) is defined by

_E-WWE) 1
L L)

In the large limit of N, f(E) is expanded using the Taylor expansion, as

of (E)

SE)=J(E)+ = = (E=E )+
where
TE)_ Lpg,r 07 at E=E’
0E N OE

or



1, 0lnW(E)
T T e

At E=E",
Z. =exp[-NBf(E)]

For simplicity, we use E instead of E”. The Helmholtz free energy F is dsefined by
F=—k;TInZ, =~k 1-NBf(E)]|=N(E)

or
F=E—-k,TInW(E)=E - ST

leading to the expression of the entropy S as

S=k,InW(E),
and

1_as

T OE

13.  The expression of entropy: S =—%, Z p,Inp,

We consider the probability given by

1 - BE
= —e ‘.,
P 7

where

Z =Ze_ﬂE“ ,

Inp, =—InZ-pE_,

The energy FE is given by



The entropy is a logarithmic measure of the number of states with significant probability of
being occupied. The Helmholtz energy F is defined by

F=U-8T =-k,TInZ.
The entropy S is obtained as

S:U—F

=kyInZ +£
T

We note that

_szpa lnpa =_szpa(_an_ﬂga)
= k,(BE +1nZ)

:£+ kBTan
T

_E-F

T
=S

Thus it follows that the entropy S is given by

S=~k,Y p,Inp, .

14. Thermal average of energy fluctuation

U=(E)

(E*)-(E)" = %ZEaze_ﬁE" —%(ZEae_ﬂE“ )



d gy d
' B =ar 2P

1 d

:_k T2@<E>

B sz Zz "]

- _ - _ 2\, P _d_Z E ¢ P
kBT2 zz[ZZ( Bt = s 2B

- () (e

where

Z—; =Y Ee =—Z(E)=-ZU

Then we have

d .z
dr~  k,

2 [<E2> _<E>2]

Since %U = C, , we get the relation

Z ) k31T)2 (%) =(£)]

15.  Example: “He atom as ideal gas
We consider the *He atom with mass

m=4u=6.64216x 102 g

The number density n at at P =1 atm and 7= 300 K, is
n=2.44631x 1019/cm’

The number of atoms in the volume ¥ = 10° cm® is
N=nV=2.44631x 10*

The internal energy



U =%NkBT =151.987 J

The entropy S

S = Nky[ln L4 21T + S (s 4 27 =5.125 K.
N2 s T

((Mathematica))
Clear["Global *"];

rulel = {kB > 1.3806504 x 107*¢,
NA - 6.02214179 x 107,
h->1.054571628 1077,
amu - 1.660538782x 10724,
atm - 1.01325x10°, bar-10°, J-10"};

nl=2.44631x10;: v1i=103; T1 = 300;

Nl=nlVl

2.44631 x 10%°

ml =4 amu /. rulel

6.64216x 102"

kB N1
Pl =
V1

Tl /. rulel

1.01325x10°



Pl/ bar /. rulel

1.01325
3
El = 5 kBN1T1l /. rulel

1.51987x10°
El/J/. rulel

151.987

3 v1
S1 = kB N1 (5 Log[T1] + Log[ﬁ] +

3 ml kB 5
2 Log 27rf12] + 5) /. rulel

5.12503x 10’

S1/J/. rulel

5.12503
16. Link
Entropy (Wikipedia)

http://en.wikipedia.org/wiki/Entropy_(statistical thermodynamics)
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APPENDIX

Partition Zustandssumme
In the classical mechanics, the partition function Z is given by

HT)

Z(N,V,T)= h%J.dNF exp[— 7 ] (phase integral)

B

where H(Nr) is the Hamiltonian in the phase space.

Laplace transformation
Z(NV,T)=> e =>W(N,V,E)e " = j W(N,V,E)e ™dE
i E 0

Thus the partition function is the Laplace transform of the density of states W (N,V ,E)
Separation of Z;

Suppose the energy of the system is a sum of subsystems which are independent to each
other

E :E.(l) +E.(2) +E.(3>

The partition function is obtained as the product of each Z
7 = Z(l)Z(2)Z(3)

where

_ar (O (@ _ar®
70 _ Ze pE 7@ _ ze s 70) _ Ze BE,
i

i i



Calculation of mean values in a canonical ensemble

Z.= Zeiﬂ &

i

oz _ar 622 . .
a_ﬁC:_ZEe PE; ’ aﬂzc :Z(_Ez’) e BE; :ZEi e BE,
<E>:U:iine—ﬁE,~ _ 1oz, _ 51HZC’
ZC i ZC aﬂ aﬂ
1 0°Z,

1 _BE,
<E2> :Z_Cleize o :Z_c o

(AEY =((E—(E))")
-(5")- (8
18z, 1 [ach
zopr z\ op
B 0°InZ,

S

or

8 d
(AEY =——U= kBT2§U=kBT2C

= o5
where C is the heat capacity.

Similarly we have

v w0 InZ,
GBS =



0
Since (AE)2 can never be negative, it follows that %<E> <0 (or equivalently, that

%{E} >0).

2 2
B )
(AE) =k,T°Cc N (E)oc N

AE AN 1
(EY N N

In the limit of N — o0 (thermodynamic limit), the energy fluctuation becomes zero.

((Adiabatic approximation))

T

Derivation of entropy

S=—k, 3 pInp,



The entropy S is defined by

S :_kgzpi lnpi
P
= —kgzpi(—ﬂEf ~InZ)np,
P
=kyB(E)+kyInZ,

=%<E>+ kyInZ,

where

Ul S pem L% oinZ,

e =
Z.4 Zc B P
We define the Helmholtz free energy

F=U-ST=—k,TInZ,



