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Here we discuss the method of canonical ensemble, which is much simpler than that of 

microcanonical ensemble. We show that both methods are equivalent. In other words, the same 

results are derived using two methods. 

 

1. Thermal equilibrium 

We consider the number of accessible states of two systems in thermal contact, with constant 

total energy, 
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The multiplicity ),( ENg  of the combined system is 
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The largest term in ),( ENg  governs the properties of the total system in thermal equilibrium. 

For an extremum, it is necessary that the differential of ),( ENg  be zero for an infinitesimal 

change of energy.  
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The thermal equilibrium condition is 
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which may be written as 
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We define the entropy S as 
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We write Eq.(1) in the final form 
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This is the condition for thermal equilibrium for two systems in thermal contact. 

 

2. Temperature 

The last equality leads to us to the concept of temperature. In thermal equilibrium, the 

temperature of the two systems are equal.  
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This rule must be equivalent to 
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or 
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So that T must be a function of 
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. If T denotes the absolute temperature in K, this function 

is simply the inverse relationship, 
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((Note)) 

 

What is the difference between the expression  
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and the expression 
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These two expressions have a slightly different meaning. In Eq.(1), S is given as a function of the 

independent variables E and N as ),( NES . Hence T has the same independent variables 

),( NETT  . In Eq.(2), ),( NSEE  . So that ),( NSTT  . The definition of temperature is the 

same in both cases, but it is expressed as a function of different independent variables. 
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3. Canonical ensemble(system with constant temperature) 

The theory of the micro-canonical ensemble is useful when the system depends on N, E, and 

V. In principle, this method is correct. In real calculations, however, it is not so easy to calculate 

the number of states W(E, E) in general case. We have an alternative method, which is much 

useful for the calculation in the real systems. The formulation of the canonical ensemble is a little 

different from that of the micro-canonical ensemble. Both of these ensembles lead to the same 

result for the same macro system. 

 

Canonical ensemble: (N, T, V, constant) 

 

Suppose that the system depends on N, T, and V. A practical method of keeping the temperature 

of a system constant is to immerse it in a very large material with a large heat capacity. If the 

material is very large, its temperature is not changed even if some energy is given or taken by the 

system in contact. Such a heat reservoir serves as a thermostat.  

 



 
 

Fig. System one (one quantum state) and system II (thermal bath, reservoir). 

 

We consider the case of a small system S(I) in thermal contact with a heat reservoir (II). The 

system S(I) is in thermal equilibrium with a reservoir W(II). S(I) and W(II) have a common 

temperature T. The system S(I) is a relatively small macroscopic system. The energy of S(I) is not 

fixed. It is only the total energy of the combined system.  

 

iIIT EEE   

 

We assume that WII(EII) is the number of states where the thermal bath has the energy EII. If S(I) 

is in the one definite state i , the probability of finding the system (I) in the state i , is 

proportional to WII(EII). The thermal bath is in one of the many states with the energy ET - Ei 
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________________________________________________________________________ 

((Note)) Taylor expansion 
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Then we obtain 
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Here we notice the definition of entropy and temperature for the reservoir as the micro-canonical 

ensemble: 
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In thermal equilibrium, we have 
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Then Eq.(1) can be rewritten as 
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where  = 1/(kBT). This is called a Boltzmann factor. We define the partition function Z as 
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Quantum mechanical approach 

 

 
 

Fig. Canonical ensemble 

 

Here we use the quantum mechanical description to explain the canonical ensemble. 



 

iEiH iˆ   (Eigenstate in the quantum mechanics, quantum state) 

 

The probability is given by 
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where Ĥ  is the Hamiltonian of the system. The letter CZ  is used because the German name is 

“Zustandssumme.” (sum over states). The probability is expressed by 
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The summation in CZ  is over all states i  of the system. We note that 

 

1)( 
i

iEp  

 

The average energy of the system is given by 
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Note that 
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In summary, the representative points of the system I are distributed with the probability density 

proportional to exp(-Ei). This is called the canonical ensemble, and this distribution of 



representative points is called the canonical distribution. The factor exp(-Ei) is often referred to 

as the Boltzmann factor. The energy Ei is dependent on T.  

 

((Note)) R. Baierlein Thermal Physics 
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This probability distribution, perhaps the most famous in all of thermal physics, is called the 

canonical probability distribution, name introduced by J. Willard Gibbs in 1901. (The adjective 

“canonical” is used in the sense of “standard.) 

 

((Example)) Blundel-Blundell Problem 4-3 

Blunde-Blundell Problem 4-3 

 
 

((Solution)) 

We consider the two states with energy 0 and energy  . Suppose that the system consists of 

N particles. Each particle takes one of these two energy states.  
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The total energy of the system is 
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Then we have 
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leading to the expression 
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Using the Taylor expansion, we have 
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From Eqs.(1) and (2), we get 
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with 
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Using the Mathematica, we make a plot of y as a function of x. 



 
 

Fig. Plot of 
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4. Canonical ensemble: Boltzmann factor 

(Kittel, Thermal Physics) 

 

We consider the case of a small system S in thermal interaction with a heat reservoir R. We 

assume that the system S is in thermal equilibrium with a reservoir R. S and R have a common 

temperature T (given). The total system (R+S) is a closed system. We assume weak interaction 

between R and S. So that their energies are additive. The energy of the system S is, of course, not 

fixed. The total energy of the combined system (R+S) is constant E0. The energy conservation can 

be written as 
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The system is in a quantum state 1, and the reservoir R has  
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states accessible to it. The system is in a quantum state 2, and the reservoir R has  
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states accessible to it. 
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Fig. The system is in quantum state 1E . The reservoir has 1( )R tg E E  accessible quantum 

states 

 

The probability )(EP  is proportional to the number of accessible states of the reservoir when 

the state of the system is exactly specified. If we specify the state of S, the number of accessible 

states of R: 
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Thus the probability )( sEP  is proportional to the number of accessible states of the reservoir, 
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By definition of entropy, 
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So that the probability ratio may be written as 
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Here the entropy difference RS  is 
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We know that 
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A term of )exp(
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
 is called a Boltzmann factor. It gives the ratio of the probability of finding 

the system in a single quantum state 1E  to the probability of finding the system in a single 

quantum state 2E . 

 

5. Pressure 

The pressure P is defined as 
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Here we define the Helmholtz free energy F as 
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F is a function of T and V; ),( VTFF  . From the equation of dF, we have 

 

T

V

V

F
P

T

F
S



























 

 

((Note)) Notation A for the Helmholtz free energy 

 

The Helmholtz free energy was developed by Hermann von Helmholtz, a German physicist, and 

is usually denoted by the letter A (from the German “Arbeit” or work), or the letter F. The IUPAC 

recommends the letter A as well as the use of name Helmholtz energy.  

 

6. Helmholtz free energy and entropy 

The Helmholtz free energy F is given by 
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We note that 
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which leads to 
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What is the expression for the entropy S in a canonical ensemble? The entropy is given by 
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where U is the average energy of the system, 
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Then entropy S is rewritten as 
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or 
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where pi is that the probability of the i state and is given by 
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The logarithm of pi is described by 
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or 

 

CB ZTkUTS ln  

 

or 

 

CB ZTkSTUF ln  

 

((Note)) 

We finally get a useful expression for the entropy which can be available for the information 

theory. 
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((Example)) 

Suppose that there are 50 boxes. There is one jewel in one of 50 boxes. pi is the probability of 

finding one jewel in the i-th box for one trial. 

 

(a) There is no hint where the jewel is. 
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(b) There is a hint that the jewel is in one of the box with even number. 
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(c) If you know that the jewel is in the 10-th box, 
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ps = 0   (s ≠ 10) 
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If you know more information, the information entropy becomes smaller. 

 

7. The method (Fermi) 

I found very interesting method for the derivation of the expression entropy S and the 

Helmholtz free energy F in the book written by Enrico Fermi, one of the greatest scientists in the 

world. 

E. Fermi, Notes on Thermodynamics and Statistics (University of Chicago, 1966). 

 

According to his book, we start with the expression 
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This expression of S can be also derived as 
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7. Application 



7.1. Partition function ZC for ideal gas system 

The partition function Z for the ideal gas can be calculated as 
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where !N  is a factor coming from indistinguishable particles (Gibbs paradox). Note that 
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1CZ  is the one-particle partition function.  
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In other words, many-particle problem reduces to one particle problem. Using this expression of 

CNZ , the Helmholtz free energy F can be calculated as 
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The internal energy E is 

 

TNk
Z

U B
CN

2

3ln








. 

 

The entropy S is 

 

]
2

5
)

2
ln(

2

3
)[ln(

2





ℏ
Tmk

N

V
Nk

T

FE
S B

B
. 

 

The pressure P is 
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7.2. Partition function ZC for photon gas system 

We consider the photon gas system with the energy dispersion cp . The N-photon partition 

function is given by 

 

 NCCN Z
N

Z 1
!

1
 . 

 

1CZ  is the one-photon partition function and is given by 

 

3

33

0

2

31

)(

8

)(

!2
4

4

ch

V

ch

V

epdp
h

V
Z cp

C







 





 




 

 

the Helmholtz free energy F can be calculated as 
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7.3 Maxwell’s distribution function 

The Maxwell distribution function can be derived as follows.  
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The constant A is calculated as 
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Since M = m NA and R = NA kB, we have 
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which agrees with the expression of f(v) in Chapter 19. 

 

((Mathematica)) 



 
 

8. Comparison of the expression of S in the canonical ensemble with the original 

definition of S in the microcanonical ensemble 

 

The partition function Z can be written as 
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The partition function ( )CZ   is the Laplace transform of the density of states, )( . The density 

of states )(  is related to the partition function ( )CZ  , through an inverse Laplace transform, 
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Here we define the function () by 
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We assume that ( )E  has a local maximum at *E E  
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() can be approximated by a Gaussian function 
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Fig. () vs . () has a Gaussian distribution with the width 
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Here we define the number of states ),( EEW   by 
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with fixed E . We note that 
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The entropy S is calculated as 

 



),(ln

)](2ln[

)](2ln[

ln
ln1

*

*
*

*

EEWk

Ek

T

E
Ek

T

E

Zk
Z

T

T

F

T

E
S

B

EB

EB

CB
C























 (2) 

 

Using Eqs.(1) and (2), we get 
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In other words, the thermodynamic properties derived from the canonical ensemble is equivalent 

to those from the microcanonical ensemble. Since the calculations for the microcanonical 

ensemble is much more complicated compared to those for the canonical ensemble, it is suggest 

that one may choose the method of canonical ensemble if it is allowed. 
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This function takes a maximum at  
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9. Boltzmann-Planck’s method 

Finally we show the standard method of the derivation, which characterizes well the theory of 

canonical ensembles. 

 



 
 

 
 



Fig. Canonical ensembles with the states (E1, E2, …). ...21  EEEtot  = constant. M1 

ensembles for the energy E1, ,M2 ensembles for the energy E2, and so on. In general, Mi 

ensembles in the energy level Ej. 

 

 

We consider the way of distributing M total ensembles among states with energies Ej. Let Mj 

be the number of ensembles in the energy level Ej; M1 ensembles for the energy E1, the M2 

ensembles for the energy E2, and so on. The number of ways of distributing M ensembles is given 

by 
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The entropy S is proportional to lnW, 
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in the limit of large M and Mj. Then we have 
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which is subject to the conditions 
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Treating P(Ej) as continuous variables, we have the variational equation  
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which gives P(Ej) for the maximum W. Here  and  are Lagrange’s indeterminate multipliers. 

Thus we obtain 
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for the total system composed of M ensembles. Therefore, the entropy of each ensemble is 

 


j

jjB EPEPkS )](ln[)(  

 

10. Density of states for quantum box (ideal gas) 

(a) Energy levels in 1D system 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the particle in the orbital.  

The orbital is defined as a solution of the wave equation for a system of only one 

electron:one-electron problem. 

Using a periodic boundary condition: )()( xLx kk   , we have 
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where n = 0, ±1, ±2,…, and L is the size of the system. 

 

(b) Energy levels in 3D system 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. Boundary 

condition (Born-von Karman boundary conditions). 
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The wavefunctions are of the form of a traveling plane wave. 
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The components of the wavevector k are the quantum numbers, along with the quantum number 

ms of the spin direction. The energy eigenvalue is 
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So that the plane wave function )(rk  is an eigen-function of p with the eigenvalue kℏ . The 

ground state of a system of N electrons, the occupied orbitals are represented as a point inside a 

sphere in k-space. 



 

(c) Density of states 

Because we assume that the electrons are non-interacting, we can build up the N-electron 

ground state by placing electrons into the allowed one-electron levels we have just found. The one-

electron levels are specified by the wave-vectors k and by the projection of the electron’s spin 

along an arbitrary axis, which can take either of the two values ±ħ/2. Therefore associated with 

each allowed wave vector k are two levels: 
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Fig. Density of states in the 3D k-space. There is one state per (2/L)3. 

 

There is one state per volume of k-space (2/L)3. We consider the number of one-electron 

levels in the energy range from  to +d; D()d  
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where D() is called a density of states.  

 



11. Application of canonical ensemble for ideal gas 

(a) Partition function for the system with one atom; 1CZ  

The partition function ZC1 is given by 
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((Mathematica)) 

 

 
 

Then the partition function 1CZ  can be rewritten as 
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where Qn  is a quantum concentration and is defined by 

 

Clear "Global` " ;

f1
V

2 3
4 k

2
Exp C1 k

2
;

Integrate f1, k, 0,

Simplify , C1 0 &

V

8 C1
3 2 3 2



2/3

22








ℏ
Tmk

n B
Q

. 

 

nQ is the concentration associated with one atom in a cube of side equal to the thermal average de 

Broglie wavelength. 

 

 
 

Fig. Definition of quantum concentration. The de Broglie wavelength is on the order of 

interatomic distance.  
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where v  is the average thermal velocity of atoms. Using the equipartition law, we get the 

relation 
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It follows that 

 

3

1


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((Definition)) 

 

1
Qn

n
 → classical regime 

 

An ideal gas is defined as a gas of non-interacting atoms in the classical regime. 

 

((Example)) 
4He gas at P = 1 atm and T = 300 K, the concentration n is evaluated as 

 

1910446.2 
Tk

P

V

N
n

B

/cm3. 

 

The quantum concentration nQ is calculated as 

 
24108122.7 Qn /cm3 

 

which means that Qnn  in the classical regime. Note that the mass of 4He is given by 

 
24106422.64  um  g. 

 

where u is the atomic unit mass. 

 

((Mathematica)) 



 
 

(b) Partition function of the system with N atoms 

Suppose that the gas contains N atoms in a volume V. The partition function ZN, which takes 

into account of indistinguishability of the atoms (divided by the factor N!), is given by 
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Using VnZ Q1 , we get 
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where we use the Stirling’s formula 
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in the limit of large N. The Helmholtz free energy is given by 
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The entropy S is obtained as 
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Note that S can be rewritten as 
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5
ln   (Sackur-Tetrode equation) 

 

((Sackur-Tetrode equation)) 

The Sackur–Tetrode equation is named for Hugo Martin Tetrode (1895–1931) and Otto 

Sackur (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics 

and entropy equations, at about the same time in 1912. 

https://en.wikipedia.org/wiki/Sackur%E2%80%93Tetrode_equation 

 



In the classical region ( 1
Qn

n
 or 1
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), we have 
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The internal energy E is given by 
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Note that E depends only on T for the ideal gas (Joule’s law). The factor 3/2 arises from the 

exponent of T in Qn  because the gas is in 3D. If Qn  were in 1D or 2D, the factor would be 1/2 or 

2, respectively. 

 

(c) Pressure P 

The pressure P is defined by 
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leading to the Boyle’s law. Then PV  is  
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(d) Heat capacity 

The heat capacity at fixed volume V is given by 
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Cp is the heat capacity at constant P. Since 
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We note that 
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E is independent of P and V, and depends only on T. (Joule’s law) 
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Thus we have 
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((Mayer’s relation)) 

 

RCC VP    for ideal gas with 1 mole. 

 

The ratio  is defined by 
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(e) Isentropic process (constant entropy) 

The entropy S is given by 
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The isentropic process is described by 

 
2/3VT =const,  or  3/2TV =const, 

 

Using the Boyle’s law ( RTPV  ), we get 
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Since  = 5/3, we get the relation 

 
PV = constant 

 

12. The expression of entropy: )(ln EWkS B  

The entropy is related to the number of states. It is in particular, closely related to Wln . In 

order to find such a relation, we start with the partition function  
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where )(EW  is the number of states with the energy E. The function )(Ef  is defined by 
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In the large limit of N, )(Ef  is expanded using the Taylor expansion, as 
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At *EE  , 
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For simplicity, we use E instead of *E . The Helmholtz free energy F is dsefined by 
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leading to the expression of the entropy S as 
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13. The expression of entropy: 
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We consider the probability given by 
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The entropy is a logarithmic measure of the number of states with significant probability of 

being occupied. The Helmholtz energy F is defined by 
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The entropy S is obtained as 
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Thus it follows that the entropy S is given by 
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14. Thermal average of energy fluctuation 
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15. Example: 4He atom as ideal gas  

We consider the 4He atom with mass 

 

um 4 = 6.64216 x 10-24 g 

 

The number density n at at P = 1 atm and T = 300 K, is 

 

n = 2.44631 x 1019/cm3   

 

The number of atoms in the volume V = 103 cm3 is 

 

N = nV = 2.44631 x 1022  

 

The internal energy 
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The entropy S 
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NkS  = 5.125 J/K. 

 

((Mathematica)) 
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16. Link 

Entropy (Wikipedia) 

http://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics) 
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APPENDIX 

 

Partition Zustandssumme 

In the classical mechanics, the partition function Z is given by 
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where )( NH  is the Hamiltonian in the phase space. 

 

Laplace transformation 
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Thus the partition function is the Laplace transform of the density of states ),,( EVNW  

 

Separation of Z; 

Suppose the energy of the system is a sum of subsystems which are independent to each 

other 
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The partition function is obtained as the product of each Z 
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Calculation of mean values in a canonical ensemble 
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where C is the heat capacity. 

 

Similarly we have 
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In the limit of N  (thermodynamic limit), the energy fluctuation becomes zero. 

 

((Adiabatic approximation)) 
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Derivation of entropy 
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The entropy S is defined by 
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We define the Helmholtz free energy 

 

CB ZTkSTUF ln  


