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The chain problem is very helpful for our understanding the approach of the microcanonical 

ensemble. This problem is discussed in the book of Kubo. 

 

 
 

There is a one-dimensional chain consisting of n (>>1) elements, as is seen in the figure. Let 

the length of each element be a and the distance between the end points x. Find the entropy of 

this chain as a function of x and obtain the relation between the temperature T of the chain and 

the force (tension) which is necessary to maintain the distance x, assuming the joints to turn 

freely. 

In order to specify a possible configuration of the chain, we indicate successively, starting 

from the left end, whether each consecutive element is directed to the right (+) or to the left (-). 

In the above figure, we have (+ + - + + + - - - + + - + + +). The number of elements n  directed 

to the right and the number n of those directed to the left together determine the distance 

between the ends of the chain x.  
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The number of configurations having the same x and hence the same n , n  is given by 
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With the help of the Stirling’s approximation, the entropy is obtained as 
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We note that 
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We note that the energy U is independent of x. The Helmholtz free energy is given by 
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From the relation, SdTPdVdF  , 
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The tension X  is obtained as 
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Fig. Normalized force 
Tk

aX

B

  vs x.  

 

The last equality is the expansion formula for nax  , and its first term corresponds to Hooke’s 

law. This chain is the simplest model embodying the essential property of rubber elasticity. 
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