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Ryogo Kubo (February 15, 1920 – March 31, 1995) was a Japanese mathematical physicist, best 
known for his works in statistical physics and non-equilibrium statistical mechanics. In the early 
1950s, Kubo transformed research into the linear response properties of near-equilibrium 
condensed-matter systems, in particular the understanding of electron transport and conductivity, 
through the Kubo formalism, a Green's function approach to linear response theory for quantum 
systems. In 1977 Ryogo Kubo was awarded the Boltzmann Medal for his contributions to the 

theory of non-equilibrium statistical mechanics, and to the theory of fluctuation phenomena. He 
is cited particularly for his work in the establishment of the basic relations between transport 
coefficients and equilibrium time correlation functions: relations with which his name is 
generally associated. 
 

https://en.wikipedia.org/wiki/Ryogo_Kubo 

 

 
 



Prof. Ryogo Kubo (from Selected Papers of Professor Ryogo Kubo on the Occasion of his 

Sixtieth Birthday (Syokabo, 1980). 

______________________________________________________________________________ 

The physics of the mesoscopic system started with the theory of metal fine particles, which 

was first proposed by Prof. Ryogo Kubo. When electrons are enclosed in a system with finite 

size, the energy levels of electron becomes discrete. The separation of the energy levels is 

typically larger than the thermal energy. So the physical properties of the metallic fine particles 

may be rather different from those of bulk system where the energy spectrum is continuous. The 

number of electrons is on the order of 105 for fine particles whose diameter is several 10 Å. 

Experimentally, such a difference may be experimentally observed in the susceptibility and heat 

capacity measurements. For simplicity, there is no degeneracy in the discrete energy levels.  

According to Kubo’s theory, the number of spins in the particles strongly affects the 

magnetic properties, depending on whether it is even or odd. The statistical mechanics is 

discussed for two particles (even) and for one particle (odd). The susceptibility and heat capacity 

can be calculated from the method of canonical ensemble. We can show that the susceptibility 

shows the Curie law for the one particle system, and that it decreases with decreasing 

temperature and reduced to zero at low temperatures for the even particle system. 

 

Kubo effect is a good exercise for the canonical ensemble. 

 

1. Two particles (even) case 

 
 

We consider a system of two particles. 

 

The partition function for the two particles is given by 
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The average energy is 
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where we neglect the term )](2exp[ 01    both in the denominator and numerator. 

The heat capacity is 
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We make a plot of C/(4kB) as a function of 



Tk

x B . This curve has a maximum (1.24645) at x = 

0.333597. 

 

 
 

The magnetic moment  of spin is given by 
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where B  is the Bohr magneton. In the presence of a magnetic field along the z axis, we have a 

Zeeman energy 
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(a) Spin-up state: 

 

 
 

(b) Spin-down state: 

 

 
 

When the magnetic field is applied along the z axis, the partition function is 
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The average energy: 
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The average magnetization: 
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In the weak limit of B,  
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So the susceptibility  
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which tends to be reduced to zero at T = 0. It seems that two spins are antiferromagnetically 

coupled at low temperatures.  

 

2. One particle case 

 



 
 

We consider a system of one particle. Here we only consider the case of b0
+, b0

-, b1, and b2. 

 

The partition function for the one particles is given by 
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The average energy is 
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The heat capacity: 
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We make a plot of C/(kB) as a function of 



Tk

x B . This curve has a maximum (0.439229) at x = 

0.416778. 

 

 



 
 

When the magnetic field is applied along the z axis, the partition function is 
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The average magnetization: 
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In the weak limit of magnetic field, 
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showing the Curie law. 
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Fig. Susceptibility vs T for the even (2 particles) and odd (1 particle) systems.  
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