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We consider an ideal gas containing of N particles obeying classical statistics. Suppose that
the energy of one particle & is proportional to the magnitude of momentum p. The dispersion
relation is expressed by ¢ =cp . We find the thermodynamic functions of this ideal gas without

considering the internal structure of the particles, based on the approach of the canonical
ensemble. This approach will be also used for an ideal gas.

1. Photon gas
We show the relation given by

pr=Lg,
3

for the photon gas with the dispersion of & = cp, which is different from the form for the ideal

gas with the dispersion & = 1 p’
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(a) The one particle partition function:
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(b) The N-particle partition function:

1 v _ L 8z 1 y 1 8aV
ZCN _W(ZCI) _M(hSC?) F) _M(hy,c?,

)N ﬂ—SN

8
he’

InZ., =—InN4NIn(——)+NInV-3NInp

Using the Stirling’s law in the limit of large N,
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The internal energy
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The Helmholtz free energy:
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The entropy S is obtained as
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S can be also derived from the relation as
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When S =const (isentropic), we have

VT =const.

The pressure P:
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From Egs.(1) and (2) we get the relation
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where u is the energy density of photon gas.

((Summary))

VT =const, PV*? =const
. 4
leading to y = Bl

2. Ideal gas (using the canonical ensemble)

We apply the above method to the ideal gas. We show that

(a) The one particle partition function:
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where we use the integral formula
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(b) The N-particle partition function:
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Using the Stirling’s law in the limit of large N,

InZ, = N[ln%—%lnﬁ+%ln(2;;n) +1]

The internal energy
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The Helmholtz free energy:
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The entropy S is obtained as
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S can be also derived from the relation as
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The pressure P:
P= —(a—Fj _ Nk, T or PV = Nk,T
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From Egs.(1) and (2) we get the relation
PV = gU
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3. Ideal gas (quantum mechanics)
We start with an expression given by

Zlc = zeiﬂg"

k

(27[) Id ke Pex

= j D(¢)e ¥ de

3)

4



with the density of states
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Here we do not take into account of the spin factor. Thus we have
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