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We discuss the thermodynamic properties of relativistic gases (classical), based on the
partition function of the canonical ensemble. The heat capacity of the non-relativistic gas is
3R/2, increases with increasing 1/u =1/(fmc’) = k,T /mc’, it reaches 3R in the relativistic
limit. This means that the degree of the freedom of the system gradually changes from /= 3
to f=6.

1. The partition function
We start with the energy of the particle is given by

E, =cy\p’+m’c’ —mc’

where the rest mass energy mc” of the particles is subtracted, so that there remains only the
kinetic energy. First we calculate the part of the one-particle partition function,

I, = J.pzdpexp[—ﬂ’(ca/p2 +m’c®) + fmc’].
0
We put

sinhx =& =2,
mc

or

\/m = mc\/@ = mccosh(x).
Since

p’dp = m’c’ sinh®(x) cosh(x)dx

we get



I =m’c?e ]gdx exp[—pmc’ cosh(x)]sinh’(x)cosh(x)
0
=m’c e’ ]gdx exp[—pmc’ cosh(x)][cosh’(x) — cosh(x)]
0
= m’ce []3 dxexp[—fBmc’ cosh(x)]cosh’ (x) — de exp[—fmc” cosh(x)]cosh(x)
0 0
noting that

sinh?®(x) = cosh®(x) —1.

We introduce the modified Bessel function of the second which is defined by
K, (u)= J. dx exp[—u cosh(x)]cosh(x)
0
and

K (u)= de exp[—u cosh(x)]cosh(x)

where u = fmc’ . Note that

d

u

K (u)= —T dx exp[—u cosh(x)]cosh’ (x)

and

d22 K (u)= de exp[—u cosh(x)]cosh’ (x)

du®
Thus we have
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Using the relation



d? 1
7K1(u)—K1(u) =;K2(u)
we have

1 2
I, =—m’c’e"™ K,(u)
u

Then the on-particle partition function is obtained as

Z. = (27;)3 47z.[p2dpexp[—ﬂcqlp2 +m’c? + ,Bmcz]
0

B Vm’c’ o K,(u)

2 u
with
u=pfmc*.
(i) The nonrelativistic limit

This immediately leads to the nonrelativistic limit with u = fmc® — o (the mean

thermal energy k,T is very small compared to the rest mass energy mc’ of the particle).
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(ii)  The high temperature limit; u = fmc> — 0
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Thus we have
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The N-particle partition function is

Z — ZCIN
CN N

taking into account of the identical particles.

InZ.,,=NInZ_. —InN!
3 3

= Nlin(— 203)+an+an () +u—Inu]-NInN + N

N[In(—— m203)+1n;+an2(u)+u+1_lnu]

where
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2. Helmbholtz free energy and Internal energy

The Helmholtz free energy is

3 3

F=-k,TInZ., =-Nk T[ln( )+ln; +InK,(u)+u+1-Inu]

The internal energy is given by



U=—ianCN

op
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- —chzdi[anz(u) +u—Inu)
u

=chz[l—l+ Kl(u)+K3(u)]
u 2K, (u)
where
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EKZ(M) = _E[Kl(”)+K3(“)]
The heat capacity:
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u 2 4K, ()]

where we use the Mathematica for this calculation; K (x) — BesselK[ v, x].
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Fig. Heat capacity of the relativistic gas.
3. Pressure

The pressure P is

P:_[a_Fj :NkBT.
ov), vV

4. Entropy
The entropy is calculated as

g U_F
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where =kyu
T

S can be rewritten as

)+ ln%HnKz(u) +u+1-Inu]
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(1) u>>1 (non-relativistic case)

T (W) @)@ -3
Kv(u)—\/;p [1+ o + 2(s8u) +...]

1+i+1+§

2yt = 8114 (L | Fe )+2+1nK+ln(
Nk, 21+ ) u\2u N

mc

1 T V
=—u+u(l+— +1n— —e ")+2+In—+In
urud+o (\/2ue) N TG s
1 3 5 v mc?
=—ln— ——In +—+In—+In
2 ) 2 (3) 2 N ( 2h3)

3 Vo5 1 3 e’
=~InT+ln—+=+=1In ———1 +1In
2 N 2 2 n) 2 ( ) ( )

)

Sreml i34 3m (2’”"k
2 N 2 2

)

which is the same as the Sackur-Tetrode equation.

The heat capacity is

c-1{Z)-2m,
or) 2

(1) u<<l (relativistic case)
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K, =02
- i(u2 +8)— lnu—z3 +2+ ln% + 111(%)
~4+3InT + ln% + ln(”fg;)
leading to
C= T(S—ij = 3Nk,
5. Adiabatic expansion
@) U-relativistic gas

For an adiabatic process (S = constant),

3

V k
S = NkB[an +3InT +4+In 7z253h3 )]= constant,

leading to
VT? =constant.

Since PV = Nk,T , we have
V(PV) = PV*=(PV*?) =constant,
or

PV7 =const with ¥ :§ .

(ii) Non-relativistic case
For an adiabatic process (S = constant),



S 3mreml 42 3k
Nk, 2 N 2 2 h

)= constant

leading to
VT*'* =constant.
Since PV = Nk,T , we have
V(PV)'? = PPy = (PV>"y"? =constant,

or

PV7 =const with  y= % .

6 Relativistic case (simpler method)
Here we discuss the relativistic case in a simpler way. The energy dispersion of the
relativistic gases is given by

e=c\p+m’c’ —mc’
For p>>mc
e=chk=cp

which is the same as that of photon. The One-particle partition function of the canonical
ensemble is given by

Ze, =Y exp(—pchk)
k
where k is the wave vector and p = ik . Noting that

k*dk

> - V347zk2dk= VZ
T (2x) 2r



we have

Z. - % [k exp(-petik)
4 0

We introduce new parameter, x = fchik . Thus we have
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with the thermal wavelength as

hcﬂ_2/3
kT

A

since
I dxx” exp(—x) = 2.
0

For the N particle system (identical), the partition function is given by
1 N
Loy = ﬁ (Ze)" -

The Helmholtz free energy is obtained as

F=—k,TInZ,,
3

=—NkBT[an+3lnT—lnN+1+1n(—f’33 ]
n°ch

where
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The internal energy:

U= —ianCN

op
0
=k,T’ a—Tln Zey

=3Nk,T
The heat capacity C:

c=Y _3m,.
or

The entropy S;

g U_F
T T

Vv ky

= NkB[lnN+ 3InT +4+ ln(”2§3h3)]

The pressure P;

P:—(a—Fj _ Nk, T
o) v

The enthalpy H:
H=U + PV =4Nk,T

The Gibbs free energy G:



G=F+PV

3

=—Nk,T[InV +3InT —InN + 1+ In(—5—~ ky

NP )]+ Nk,T
k 3
=—Nk,T[InV +3InT —In N + In( 35 )]
We note that
PV = Nk,T, U =3Nk,T
Then we have
PV =—, P= 1U = lu
3 3V 3
7. Summary
Non-relativistic limit Relativistic ;limit
u=fmc* >>1 u=pPmec* <<1
C=3R/2 C=3R
P= gu P= lu
3
PV = Nk,T PV = Nk,T
_3 _4
73 73
8. Maxwell-Boltzmann distribution for a relativistic gas

Problem and solution (Huang, Introduction to Statistical Mechanics)
Problem 6-7

6.7 The Maxwell-Boltzmann distribution for a relativistic gas is

f(p)=Cexp(-fcy p* + m*c?)

where we use the units in which the velocity of light is ¢ = 1.



(a) Find the most probable velocity. Obtain its nonrelativistic (k7" <<m) limits and
ultrarelativistic (k,7" >>m) limits, both with first-order corrections.

(b) Set up an expression for the pressure. Show that PJ =% in the ultra-relativistic
limit, where U is the average energy.

(©) Find the velocity distribution function, f(v), such that f(v)dv is the density of
particles whose velocity lies in the volume element dv . Find the nonrelativistic limit
to the first order in v/c.

(d) At what temperatures would the relativistic effect be important for a gas of H»
molecules?

((Solution))

N(p)d’ p is the number of particles having the momentum with

px_px+dpx7
py_py+dpy7
p.—p.+dp.

f(p)d’p is the number density (the number per unit volume) of particles having the

momentum with

px_px+dpx7

py_py+dpy7

p.—p.+dp.
Note that

(a)

N(p)=Vf(p), J(p)=Cyexp(=pfe(p))

Here we use N(p) instead of f(p) such that

¢, _N 3 __N
SN = [aprp)=n="



or

[N =[d'p £ ()

or
N = (D)= Cyexp(-f2,)
with
£, =\mct+p?
(b)

The pressure P is given by

= | Ap (Av, A1) N(p)cﬁp ijx(Av) N(p)d’p

v, >0 v, >0

or

1
P="2=— [2pv.N(p)d’
prxx (p)d~p

v, >0

Thus we have

P=— [2pyN(p)d'p

v, >0

= [p.f (p)d ’
= [-—=—r(p)d’p
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We now calculate the pressure P as follows.

2
Pl 2

3f — f(p)d’p
Jm* L
C

Note that




In the limit of p® >>m’c”, the second term can be neglected.

Pz%jgpf(p)d3p21n<g> Nig1E

3 14 3V
or
Py =1y
3
where
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The probability distribution function

FWAndv = f(p)4mp’dp

= 47ZC0p2dp exp(—f Jmict + czpz)

where




pdp = m(l+—)dv ~ 2 dv
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Then we have

3.2

(WA dv = 47C, — "~ dvexp(—f
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leading to
3 2
fW)=C——F—exp(-f =)
(1 )5/2 1 _ L
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We consider the probability P(v)dv, where
Vv
72 2
P(v)=4mm’c’C, —=5——exp(-f
(1) 1_L
Cz cz
and
v
72 2
F(v)=—"%—exp(-f =).
/
(1= 1_L2
c

. v
For simplicity, we put x=—, a = fmc’.
c



X mcz

F(x)= Wexp(—ﬂ .

)

The most probable velocity can be obtained from the condition that

dF (x) _
dx

0

Using the Mathematica, we get the equation
2-3x" +x*(1—aVl-x*)=0
or

24+ x*=3x*
a:

N1 —x?
Suppose that we have

B 24+ x*=3x*

SN

We make a plot of y1 and 2, as a function of x (0<x<1).
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Fig.1 The plot of y1= a and y as a function of x. @ = 5 (blue) and a = 0.5 (purple). y2 vs x
(red).

When y, =a =0.5 the intersection of y; and y> occurs around x = 1. When a = 5, the

intersection of y1 and y2 occurs at small x. So the value of x decreases rapidly as the value
of a. decreases.

((Example))

We make a plot of F(x) as a function of x where a is changed as a parameter. We choose a
=0.5and a=>5.

(a) a=0.5
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Fig.2 F(x)vs x with a =0.5. The peak appears around x = v/c = 0.998.
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Fig.3 F(x) vs x with a =5. The peak appears around x = v/c = 0.72.

Approximation:



We solve the equation

_2+x2—3x4 _

%27 xX*A1=x2

(a) a is very small. So the value of x is close to 1.

2 _ .4 — 52 2 -x°
a=2+x 3x" _(1=x7)(2+3x7) 1 2x 2+3x%)~5 I1— x>
A1- 5 F1-2 *

in the limit of x — 1. Then we have

or

v pmc’ me® 2
—=1-(—)" =1-(——)" for fBmc” <<1
. (=) (SkBT) P

In fact, when a = 0.5, x = 0.99 (see Fig.2). So this approximation is reasonable.

(b) a is large. So the value of x is close to zero.

Suppose that x = 0.

_2+x2—3x4 N 2
~T 2

a=— 2
xAl—x X

in the limit of x — 0. Then we have

or



12 2 2k,T
_=\/ —\/ 2 for fmc* >>1

c pmc’ N\ me

Whena=35, x= \/% .=0.63 (see Fig.3). So this approximation is reasonable.
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APPENDIX-I
Modified Bessel function of the second

Asymptotic expansion:

For u <<1,

K. (u) = (v—- 12 v
For u >>1,

K, (u)= \/Z e[l + (4258;12) L@ _21!2();:;2 -3, ]
APPENDIX-II Characteristic temperature

For an electron, the characteristic temperature 7, is

T - m,c’
k

e
B

=5.92987 x 10° K,

for pm,c’ =1.

For a proton, the characteristic temperature 7,



2
T mpc

p

=1.08881 x 101 K,

B

for fm,c* =1.



