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We discuss the thermodynamic properties of relativistic gases (classical), based on the 

partition function of the canonical ensemble. The heat capacity of the non-relativistic gas is 

3R/2, increases with increasing 22 /)/(1/1 mcTkmcu B  , it reaches 3R in the relativistic 

limit. This means that the degree of the freedom of the system gradually changes from f = 3 

to f = 6. 

 

1. The partition function 

We start with the energy of the particle is given by 
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where the rest mass energy 2mc  of the particles is subtracted, so that there remains only the 

kinetic energy. First we calculate the part of the one-particle partition function, 
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noting that 
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We introduce the modified Bessel function of the second which is defined by 
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where  2mcu  . Note that 
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Then the on-particle partition function is obtained as 
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with 
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(i) The nonrelativistic limit 

This immediately leads to the nonrelativistic limit with  2mcu   (the mean 

thermal energy TkB  is very small compared to the rest mass energy 2mc  of the particle). 
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(ii) The high temperature limit; 02  mcu   
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The N-particle partition function is 
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taking into account of the identical particles. 
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2. Helmholtz free energy and Internal energy 

The Helmholtz free energy is 
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The internal energy is given by 
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where 

 

)]()([
2

1
)( 312 uKuKuK

du

d
  

 

The heat capacity: 
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where we use the Mathematica for this calculation; )(xK BesselK[, x]. 



 
 

Fig. Heat capacity of the relativistic gas. 

 

3. Pressure 

 

The pressure P is 
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4. Entropy 

The entropy is calculated as 
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(i) 1u   (non-relativistic case) 
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which is the same as the Sackur-Tetrode equation. 

 

The heat capacity is 
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(ii) 1u   (relativistic case) 
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leading to 

 

BNk
T

S
TC 3











  

 

5. Adiabatic expansion 

 

(i) U-relativistic gas 

For an adiabatic process (S = constant),  

 

)]ln(4ln3[ln
332

3

ℏc

k
T

N

V
NkS B

B 
 = constant, 

 

leading to 
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Since TNkPV B , we have 
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(ii) Non-relativistic case 

For an adiabatic process (S = constant),  
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leading to 
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Since TNkPV B , we have 

 
2/33/52/52/32/3 )()( PVVPPVV  =constant, 

 

or 

 

PV =const  with  
3

5
 . 

 

 

6  Relativistic case (simpler method) 

Here we discuss the relativistic case in a simpler way. The energy dispersion of the 

relativistic gases is given by 
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For mcp   
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which is the same as that of photon. The One-particle partition function of the canonical 

ensemble is given by 
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where k is the wave vector and kp ℏ . Noting that 

 

dkk
V

dkk
V 2

2

2

3 2
4

)2( 





k

 

 



we have 

 





0

2

21 )exp(
2

kcdkk
V

ZC ℏ


. 

 

We introduce new parameter, kcx ℏ . Thus we have 
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with the thermal wavelength as 
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For the N particle system (identical), the partition function is given by 
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The Helmholtz free energy is obtained as 
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The internal energy: 

 

TNk

Z
T

Tk

ZU

B

CNB

CN

3

ln

ln

2













 

 

The heat capacity C: 
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The entropy S; 
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The pressure P; 
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The enthalpy H: 
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The Gibbs free energy G: 
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We note that 
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Then we have 
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7. Summary 

 

Non-relativistic limit Relativistic ;limit 
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8. Maxwell-Boltzmann distribution for a relativistic gas 

 

Problem and solution (Huang, Introduction to Statistical Mechanics) 

Problem 6-7 

 

6.7 The Maxwell-Boltzmann distribution for a relativistic gas is 
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where we use the units in which the velocity of light is c = 1. 



(a) Find the most probable velocity. Obtain its nonrelativistic )( mTkB   limits and 

ultrarelativistic )( mTkB   limits, both with first-order corrections. 

(b) Set up an expression for the pressure. Show that 
3

U
PV   in the ultra-relativistic 

limit, where U is the average energy. 

(c) Find the velocity distribution function, )(vf , such that vv df )(  is the density of 

particles whose velocity lies in the volume element vd . Find the nonrelativistic limit 

to the first order in cv / . 

(d) At what temperatures would the relativistic effect be important for a gas of H2 

molecules? 

 

 

((Solution)) 

pp 3)( dN  is the number of particles having the momentum with 

 

zzz

yyy

xxx

dppp

dppp

dppp







 ,

 ,

 

 

pp 3)( df  is the number density (the number per unit volume) of particles having the 

momentum with 

 

zzz

yyy

xxx

dppp

dppp

dppp







 ,

 ,

 

 

Note that 

 

)()( pp VfN  , ))(exp()( 0 pp  Cf  

 

(a) 

 

Here we use )( pN  instead of )( pf  such that 
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The pressure P is given by 
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leading to the expression of v as 

 

2

2
2

c
m

p

p
v



 . 

 

We now calculate the pressure P as follows. 
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In the limit of 222 cmp  , the second term can be neglected. 
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The probability distribution function 
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We consider the probability dvvP )( , where 
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For simplicity, we put 
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The most probable velocity can be obtained from the condition that  
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Using the Mathematica, we get the equation 
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We make a plot of y1 and y2, as a function of x (0<x<1). 

 



 
 

Fig.1 The plot of y1= a and y2 as a function of x. a = 5 (blue) and a = 0.5 (purple). y2 vs x 

(red). 

 

When 5.01  ay  the intersection of y1 and y2 occurs around x = 1. When a = 5, the 

intersection of y1 and y2 occurs at small x. So the value of x decreases rapidly as the value 

of a. decreases. 

 

((Example)) 

We make a plot of F(x) as a function of x where a is changed as a parameter. We choose a 

= 0.5 and a = 5. 

 

(a)  a = 0.5 
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Fig.2 F(x) vs x with a = 0.5.  The peak appears around x = v/c = 0.998. 

 

(b) a = 5 

 

 
 

Fig.3 F(x) vs x with a = 5.  The peak appears around x = v/c = 0.72. 

 

Approximation: 
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We solve the equation 
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(a) a is very small. So the value of x is close to 1. 
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in the limit of 1x . Then we have 
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In fact, when a = 0.5, 99.0x (see Fig.2). So this approximation is reasonable. 

 

(b) a is large. So the value of x is close to zero. 

 

Suppose that 0x . 
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in the limit of 0x . Then we have 
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APPENDIX-I 

Modified Bessel function of the second 

 

Asymptotic expansion: 
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APPENDIX-II Characteristic temperature 

For an electron, the characteristic temperature eT  is 
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for 12 cme . 

For a proton, the characteristic temperature pT  
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