Rotation states of diatomic molecules – Simplest case. Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 29, 2017)

The rotational energy are easily calculated. We can think of the molecules as a dumbdell, which can rotate about its center of mass. The classical energy of rotation is

$$E_{rot} = \frac{1}{2}I\omega^2$$

where I is the moment of inertia and ω is the angular velocity. Since the angular momentum L is

$$L = I\omega$$

It follows that $\omega = \frac{L}{I}$ and the rotation energy is

$$E_{rot} = \frac{1}{2I}L^2$$

This formula is also valid in quantum mechanics, if we use the correct quantized values

$$L^2 \rightarrow \hbar^2 l(l+1)$$

for L^2 . Hence the rotation energy of diatomic molecule is

$$E_{rot}(l) = \frac{1}{2I}\hbar^2 l(l+1)$$

14.6 A simple model for the rotational energy is

$$\varepsilon_{lm} = \frac{\hbar^2}{2I}l(l+1)$$

where $l = 0, 1, 2, ..., m = -\ell, ..., l$, and *I* is the moment of inertia. Thus

$$Z_{rot} = \sum_{l=0}^{\infty} (2l+1) \exp[-\frac{\beta \hbar^2 l(l+1)}{2I}]$$

(b) For $k_B T >> \hbar^2 / (2I)$ approximate the sum over *l* by an integral. Show that

$$\frac{C_{rot}}{k_B} \approx 1$$

How about the entropy vs temperature?

(c) Make a quantitative sketch of U/N and C_{rot} as functions of temperature. Does C_{rot} approach the asymptotic value from above or below?

((Solution))

We consider the quantum state given by $|l,m\rangle$, where

$$\hat{\boldsymbol{L}}^2 |l,m\rangle = \hbar^2 l(l+1)^2 |l,m\rangle, \qquad \hat{L}_z |l,m\rangle = \hbar^2 l(l+1)^2 |l,m\rangle$$

where m = -l, -l+1, ..., l-1, and l (2*l*+1, fold)

The partition function for the canonical ensemble

$$Z_C = \sum_{l=0}^{\infty} (2l+1) \exp[-\beta \varepsilon(l)]$$
$$= \sum_{l=0}^{\infty} (2l+1) \exp[-\beta \frac{\hbar^2 l(l+1)}{2I}]$$

where the energy eigenvalue for the state $|l,m\rangle$ is given by

$$\varepsilon(l) = \frac{\hbar^2 l(l+1)}{2I}.$$

We define the characteristic temperature as

$$\Theta = \frac{\hbar^2}{2k_B I} \,.$$

$$Z_C = \sum_{l=0}^{\infty} (2l+1) \exp[-\frac{\Theta}{T}l(l+1)]$$

The Helmholtz free energy

$$F = -k_B T \ln Z_C$$

The internal energy:

$$E = -\frac{\partial \ln Z_C}{\partial \beta} = k_B T^2 \frac{\partial \ln Z_C}{\partial T}$$

The heat capacity:

$$C = \frac{\partial E}{\partial T}$$

The entropy S is

$$S = k_B (\ln Z_C - \beta \frac{\partial}{\partial \beta} \ln Z_C).$$
$$S = \frac{E}{T} + k_B \ln Z_C$$
$$= k_B \ln Z_C + k_B T \frac{\partial \ln Z_C}{\partial T}$$

$$=k_B(\ln Z_C - \beta \frac{\partial \ln Z_C}{\partial \beta})$$

(a) The low temperature limit ($T \ll \Theta$)

$$Z_C \approx 1 + 3e^{-2\Theta/T}$$

$$E = k_B T^2 \frac{\partial \ln Z_C}{\partial T} = k_B T^2 \frac{1}{Z_C} \frac{\partial Z_C}{\partial T} = 6k_B \Theta \frac{e^{-2\Theta/T}}{1 + 3e^{-2\Theta/T}} \approx 6k_B \Theta e^{-2\Theta/T}$$

$$C = \frac{dE}{dT} = 12k_B \frac{\Theta^2}{T^2} e^{-2\Theta/T}$$

(b) The high temperature limit $(T >> \Theta)$

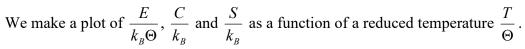
$$Z_C \approx \int_{0}^{\infty} dx (2x+1) \exp[-\frac{\Theta}{T} x(x+1)] = \frac{T}{\Theta}$$

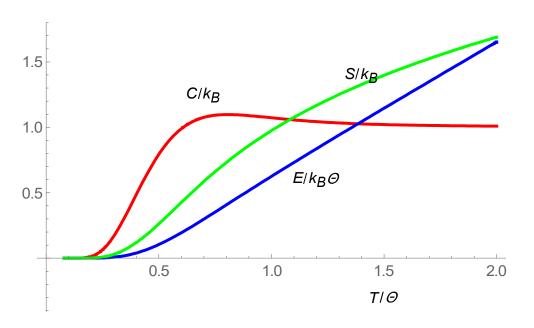
$$E = k_B T^2 \frac{\partial \ln Z_C}{\partial T} = k_B T$$

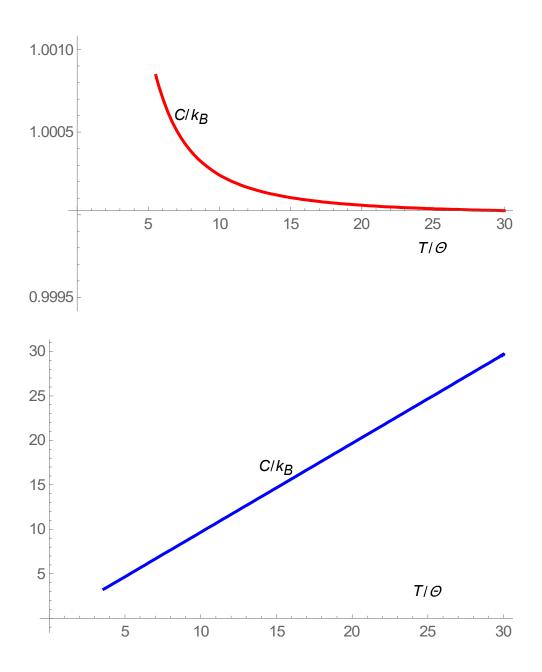
$$C = k_B$$

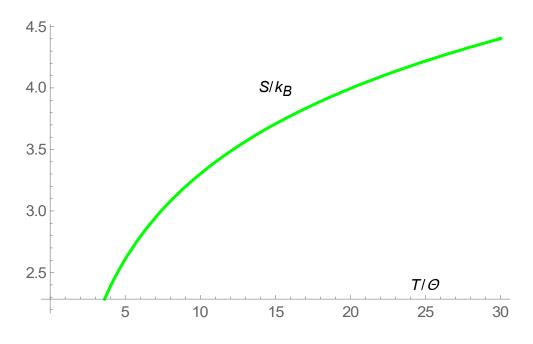
$$S = k_B \left[\ln \left(\frac{T}{\Theta} \right) + 1 \right]$$

(c)









((Mathematica))

```
Clear["Global` *"];
f[x_n, n_1] := (2n+1) \exp\left[-\frac{1}{2}n(n+1)\right];
N1 = 7;
ZC = \sum_{n=0}^{NI} f\left[\frac{T}{\Theta}, n\right] / / Simplify;
E1 = kB T<sup>2</sup> D[Log[ZC], T] // Simplify;
C1 = D[E1, T] // Simplify;
S1 = kB (Log[ZC] + T D[Log[ZC], T]) // Simplify;
Ey1 = \frac{E1}{kR\Theta} /. {T \rightarrow \Theta x};
Cy1 = \frac{C1}{kP} / . \{T \to \Theta x\};
Sy1 = \frac{S1}{\sqrt{R}} /. {T \rightarrow \Theta x};
p1 = Plot[Evaluate[Cy1], \{x, 0, 2\},
   PlotPoints \rightarrow 100, PlotStyle \rightarrow {Red, Thick}];
p2 = Plot[Evaluate[Ey1], \{x, 0, 2\},
   PlotPoints \rightarrow 100, PlotStyle \rightarrow {Blue, Thick}];
p3 = Plot[Evaluate[Sy1], \{x, 0, 2\},
   PlotPoints \rightarrow 100, PlotStyle \rightarrow {Green, Thick}];
p4 =
 Graphics [
   {Text[Style["T/\OB", Italic, Black, 10],
      \{1.5, -0.3\}],
    Text[Style["C/k_B", Italic, Black, 10],
      \{0.7, 1.25\}],
    Text[Style["E/k_B\Theta", Italic, Black, 10],
      \{1.2, 0.6\}],\
    Text[Style["S/k_B", Italic, Black, 10],
      \{1.4, 1.4\}\}\}
Show[p1, p2, p3, p4, PlotRange \rightarrow All]
```

((Huang))

8.6 (a)

$$\ln Q_{\rm rot} \approx \ln \left(1 + \exp\left(-\beta\hbar^2/I\right)\right) \approx \exp\left(-\beta\hbar^2/I\right)$$
$$\frac{U}{N} = -\frac{\partial \ln Q_{\rm rot}}{\partial\beta} = \frac{\hbar^2}{I} \exp\left(-\frac{\beta\hbar^2}{I}\right)$$
$$\frac{c_{\rm rot}}{k} \approx 3\left(\frac{\beta\hbar^2}{I}\right)^2 \exp\left(-\frac{\beta\hbar^2}{I}\right)$$

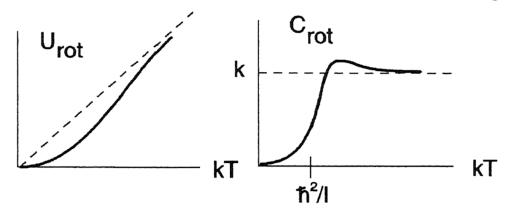
(b)

$$egin{aligned} Q_{
m rot} &pprox & \int_0^\infty d\ell\, 2\ell \exp\left(-eta \hbar^2\ell^2/2I
ight) \propto .eta^{-1} \ U/N &pprox & kT \end{aligned}$$

$$rac{c_{
m rot}}{k} pprox 1$$

(c)

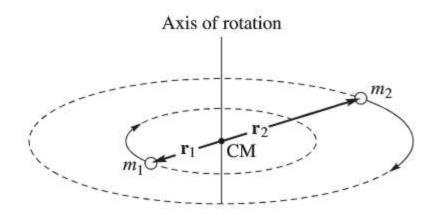
The internal energy rises exponentially from T = 0 to approach a linear behavior. The qualitative behaviors are as shown in the accompanying sketch.

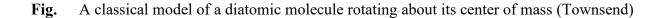


REFERENCES

E. Fermi, Notes on Thermodynamics and Statistics (University of Chicago, 1966). Huang Introduction to Statistical Mechanics APPENDIX Infrared absorption of HCl

1. Moment of inertia for diatomic molecule





The moment of inertia around the center of mass is given by

$$I = m_1 r_1^2 + m_2 r_2^2.$$

From the definition of the center of mass, it is required that

$$m_1r_1=m_2r_2.$$

Suppose that the length of the bond r_0 is given by

$$r_1 + r_2 = r_0$$
.

Then we have

$$r_1 = \frac{m_2 r_0}{m_1 + m_2}, \qquad r_2 = \frac{m_1 r_0}{m_1 + m_2}.$$

The moment of inertia is obtained as

$$I=\mu r_0^2,$$

where μ is the reduced mass and is defined by

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \,.$$

2. Evaluation of the moment of inertia in HCl The bond length between H and Cl in HCl is

$$r_0 = 1.274$$
 Å.

The mass of H is	m(H) = 1.00794 u.
The mass of Cl is	m(Cl) = 35.433 u.

where u is the atomic mass unit and is given by

$$u = 1.660539 \times 10^{-24}$$
 g.

The reduced mass is

$$\mu(HCl) = \frac{m(H)m(Cl)}{m(H) + m(Cl)} = 0.980061u = 1.62743 \text{ x } 10^{-24} \text{ g}$$

The moment of inertia is

$$I = \mu r_0^2 = 2.64144 \times 10^{-40} \text{ g cm}^2.$$

2. Experimental determination of *I*

The energy level related to the rotaion is given by

$$E_l = \frac{\hbar^2 l(l+1)}{2I} \,.$$

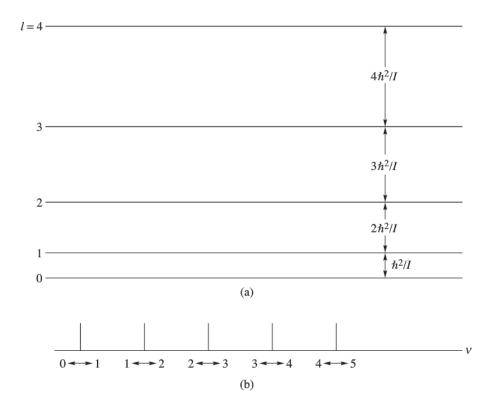


Fig. An energy-level diagram of a 3D rigid rotator. Transitions between adjacent energy levels generate the rotation spectrum (Townsend)

Figure shows the purely rotational absorption spectrum of HCl. Notice that the values of *l* are all integral.

$$\Delta E = E_l - E_{l-1} = \hbar \omega = \hbar ck = \hbar c \frac{2\pi}{\lambda}$$

or

$$\Delta E = E_l - E_{l-1} = \frac{\hbar^2 l(l+1)}{2I} - \frac{\hbar^2 l(l-1)}{2I} = \frac{l\hbar^2}{I}$$

Then we have

$$\frac{l\hbar^2}{I} = \hbar c \frac{2\pi}{\lambda},$$

or

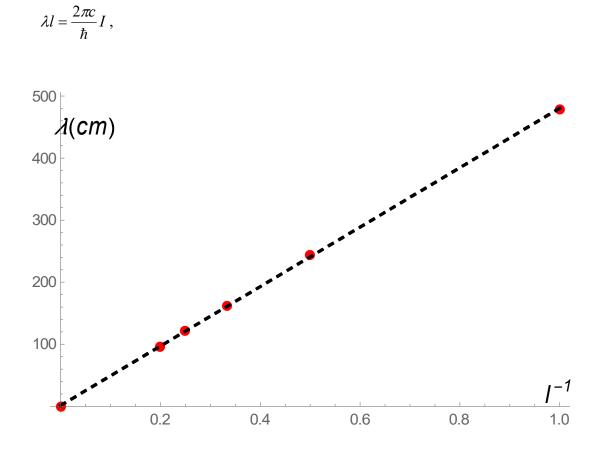


Fig. Plot of λ (cm) as a function of 1/l. The red circles denote the experimental data. The dashed line is a least-squares fit curve.

The least squares fits of the data yields

$$\lambda = \frac{479.183 \times 10^{-4}}{l} \text{ (cm)}$$

When $\lambda l = 0.0479183$ cm (experimental data), we have

 $I = 2.68273 \times 10^{-40} \text{ cm}^2 \text{ g}.$

which is very close to the theoretical value

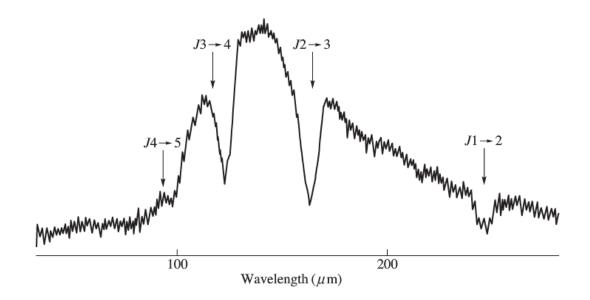


Fig. Absorption spectra of HCl (Townsend)

Transition $l - 1 \rightarrow l$	λ (microns)	$v = c/\lambda$ (10 ⁹ Hz)	ν/ <i>l</i> (10 ⁹ Hz)	λl (cm)	λν (eV)
$(0 \rightarrow 1)^a$	(479)	(626)	(626)	(0.0479)	(0.0026)
$1 \rightarrow 2$	243	1235	618	0.0486	0.0051
$2 \rightarrow 3$	162	1852	617	0.0486	0.0077
$3 \rightarrow 4$	121	2479	620	0.0484	0.0103
$4 \rightarrow 5$	96	3125	625	0.0480	0.0129

Table Rotational absorption transition in HCl. $1GHz=10^9$ Hz. 1 THz= 10^{12} Hz

4. Infrared absorption spectra of HCl

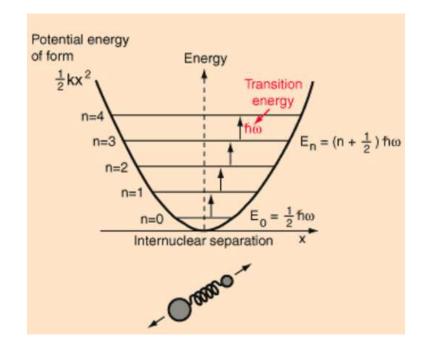


Fig. Energy level of the simple harmonics (in quantum mechanics). <u>http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html</u>

The combined vibrational and rotational energy of a diatomic molecule is given by

$$E(n_{v},l) = (n_{v} + \frac{1}{2})\hbar\omega + \frac{\hbar^{2}l(l+1)}{2I}$$

Figure shows an energy-level diagram. HCl possesses a permanent dipole moment. There is a vibrational selection rule

$$\Delta n_v = \pm 1$$
,

for electric dipole transitions. In addition, the rotational selection rule, $\Delta l = \pm 1$ leads to the set of allowed vibration-rotation frequencies. Note that the state $|l,m\rangle$ has the parity $(-1)^l$. The state

$$|n_{v}\rangle$$
 has the parity $(-1)^{n}$.

The center frequency for $n_v = 0$ to $n_v = 1$.

$$f = \frac{\omega}{2\pi} = 8.66 \times 10^{13} \,\mathrm{Hz} = 86.6 \,\mathrm{THz}$$

where

$$1 \text{ THz} = 10^{12} \text{ Hz}$$

Since $\omega = \sqrt{\frac{k}{\mu}}$, we can determine the force constant for the simple harmonics, as

$$k = \mu \omega^2 = \mu (2\pi f)^2 = 4.81834 \text{ x } 10^5 \text{ dyne/cm} = 480.1834 \text{ x } 10^3 \text{ N/m}$$

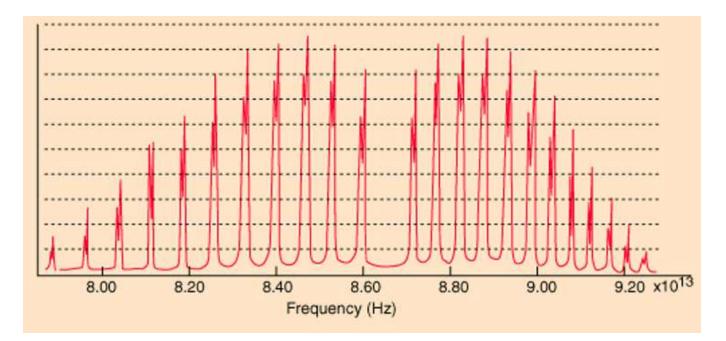
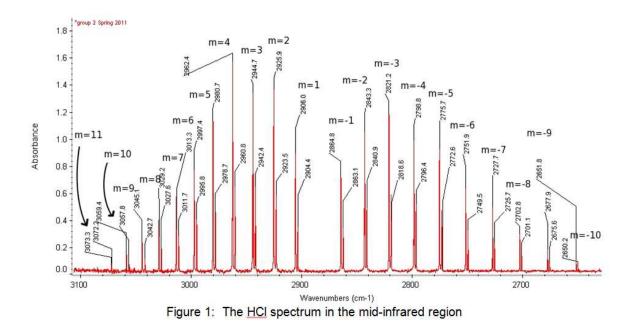
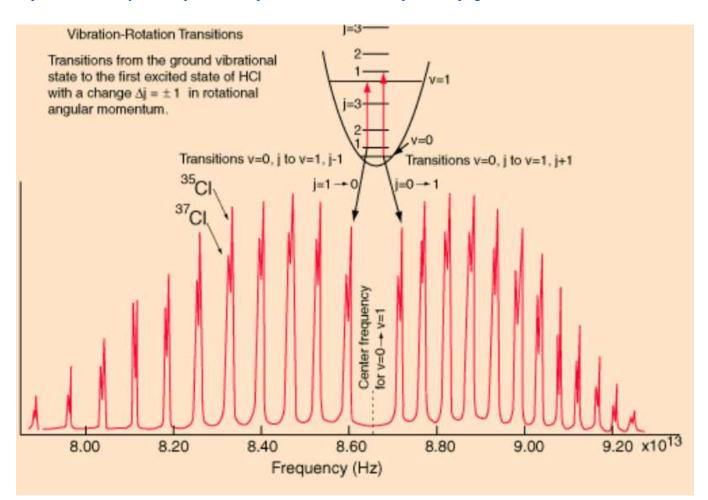


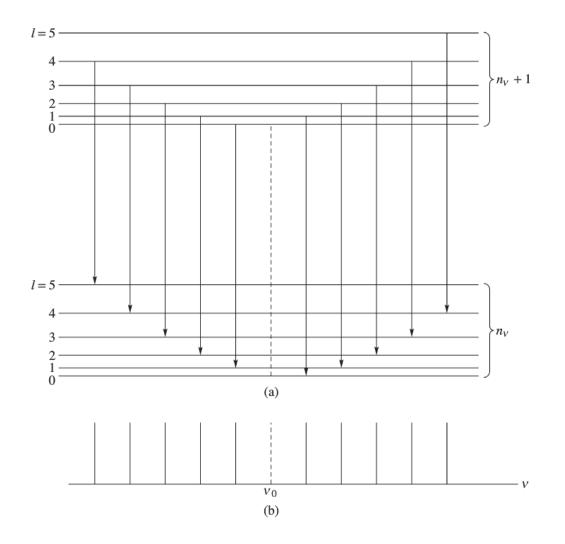
Fig. Infrared absorption of HCl. http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html



http://www.odinity.com/wp-content/uploads/2014/04/HCI-Spectrum.png



http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html



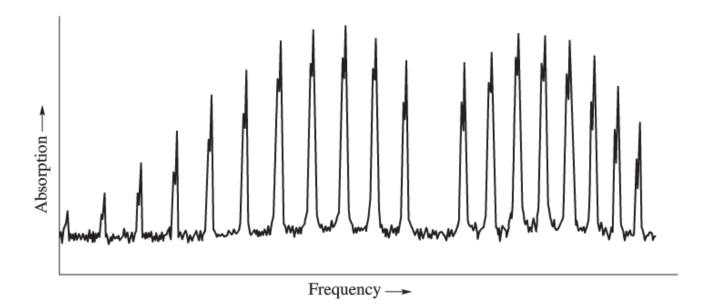


Fig. A vibrational-rotational absorption spectrum of HCl (Townsend).

5. Intensity ratio

 $k_B T = 25.852 \text{ meV}$ (T = 300 K),

$$\hbar \omega = 0.3581 \text{ eV},$$

$$\exp(-\frac{\hbar\omega}{k_B T}) = 9.62436 \times 10^{-7}$$

Intensity for the transition from $(n_v = 1, l-1)$ state to $(n_v = 0, l)$ state is given by

$$I(l) = (2l+1)\exp[-\frac{\hbar^2 l(l+1)}{2Ik_BT}] = (2l+1)\exp[-\frac{l(l+1)B}{k_BT}],$$

where

$$B = \frac{\hbar^2}{2I} = 2.10514 \text{ x } 10^{-15} \text{ erg.}$$

6. Maximum intensity

The maximum of the intensity is given by taking the derivative of I(l) with respect to l,

From

$$\frac{dI(l)}{dl} = \exp[-\frac{l(l+1)}{k_B T}B][\frac{2k_B T - B(1+2l)^2}{k_B T}] = 0.$$

I(l) has a peak at

$$2l+1 = \sqrt{\frac{2k_BT}{B}} = 6.273$$
 or $l = 2.63$.

when T = 300 K and $B = \frac{\hbar^2}{2I} = 2.10514 \text{ x } 10^{-15} \text{ erg.}$

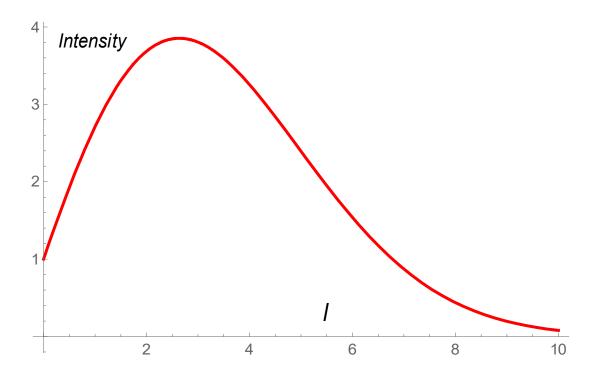


Fig. Intensity $I(l) = (2l+1)\exp[-\frac{l(l+1)}{k_BT}B]$ as a function of l. T = 300 K. $B = \frac{\hbar^2}{2I} = 2.10514 \text{ x}$ 10^{-15} erg

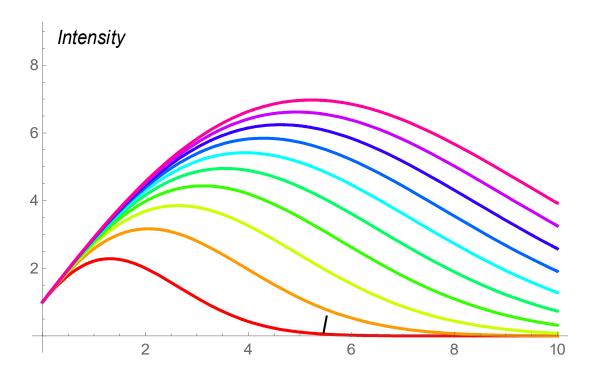


Fig. Intensity vs l where T is changed as a parameter. T = 100 K (red), 200 K, 300 K, 400, K,..., 900 K (purple), and 1000 K. The peak position of *l* shifts to the higher side as *T* increases.

REFERENCES

- A.P. French and E.F. Taylor, An Introduction to Quantum Physics (W.W. Norton, 1978).
- P.A. Tipler and R.A. Llewellyn, Modern Physics, Fifth edition (W.H. Freeman and Company, 2008).
- G. Herzberg, Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules, 2nd edition (D. Van Nostrand, 1950).
- J.S. Townsend, A Modern Approach to Quantum Mechanics, 2nd edition (University Science Books, 2012).