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The rotational energy are easily calculated. We can think of the molecules as a dumbdell, which
can rotate about its center of mass. The classical energy of rotation is
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where [ is the moment of inertia and  is the angular velocity. Since the angular momentum L is

L=I1w
L . .
It follows that @ = 7 and the rotation energy is

rot = LLZ
21

This formula is also valid in quantum mechanics, if we use the correct quantized values
L =l +1)

for I’ . Hence the rotation energy of diatomic molecule is

B, ()= 11 +1)

14.6 A simple model for the rotational energy is

where [=0,1,2,..., m=—/,..., [, and [ is the moment of inertia. Thus
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(b) For k,T >> h*/(21) approximate the sum over / by an integral. Show that
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How about the entropy vs temperature?

(c) Make a quantitative sketch of U/ N and C,

.. as functions of temperature. Does C,,

approach the asymptotic value from above or below?

((Solution))

> , where
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where m = -/, -I+1,..., -1, and [ (21+1, fold)
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The partition function for the canonical ensemble

Z. i(Zl + 1) exp[—pe(])]
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> is given by

where the energy eigenvalue for the state

R(+1)

e(l)= i

We define the characteristic temperature as




Z, = i(zz + 1)exp[—%l(1 +1)]

The Helmholtz free energy
F=-k,TInZ,

The internal energy:
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The heat capacity:
c=E
oT
The entropy S is

o
S =ky(InZ, —ﬂﬁlnzc).
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(a) The low temperature limit (7 << ®)
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(b) The high temperature limit (7 >> ®)
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S= kB[ln(%j +1]

(c)
E C . T
We make a plot of , — and — as a function of a reduced temperature o
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((Mathematica))




Clear["Global *"];
1

FIx ,n ] := (2n+1) Exp[-— n (n+1)];
X

N1=7;
N1 T

7C = Zf[g, n] // Simplify;
n=0

El= kB T?>D[Log[ZC], T] // Simplify;
Cl1=D[E1l, T] // Simplify;
S1 = kB (Log[ZC] + TD[Log[ZC], T]) // Simplify;

E1l

Eyl= — /. {T > 6 Xx};
kB 6
C1

Cyl=— /. {T>6x};
kB
S1

Syl = /. {T>6x};

kB
pl = Plot[Evaluate[Cyl], {x, O, 2},
PlotPoints -» 100, PlotStyle -» {Red, Thick}];
p2 = Plot[Evaluate[Eyl], {x, 0, 2},
PlotPoints -» 100, PlotStyle » {Blue, Thick}];
p3 = Plot[Evaluate[Syl], {x, 0, 2},

PlotPoints -» 100, PlotStyle » {Green, Thick}];

pa =
Graphics|[
{Text[Style["T/6", Italic, Black, 10],
{1.5, -0.3}],
Text[Style["C/kg", Italic, Black, 10],
{0.7, 1.25}],
Text[Style["E/kg®", Italic, Black, 10],
{1.2, 0.6}],
Text[Style["S/kg", Italic, Black, 10],
{1.4, 1.4}]11}];
Show[pl, p2, p3, p4, PlotRange -» All]



((Huang))

8.6
(2)

lD. Qrot

N

(b)
Qrot
U/N

(c)

In (14 exp (—Bh%/I)) ~ exp (—BK*/I)

_OInQu _ R [ BR
a8 I P\ "7

Cot o (BR2 BR?
T~3(7) = (-T)

~ / dl 2¢ exp (—ﬂh2€2/2l) o« .B7?
0
~ kT

The internal energy rises exponentially from T = 0 to approach a linear
behavior. The qualitative behaviors are as shown in the accompanying sketch.
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APPENDIX
Infrared absorption of HCI

1. Moment of inertia for diatomic molecule

Axis of rotation

Fig. A classical model of a diatomic molecule rotating about its center of mass (Townsend)

The moment of inertia around the center of mass is given by
= m17”12 + m2r22 .

From the definition of the center of mass, it is required that
My, =m,r, .

Suppose that the length of the bond o is given by
h+r=1.

Then we have

_ _
n=————, ry=———.
m1+m2 m1+m2

The moment of inertia is obtained as



I = O2 )
where g is the reduced mass and is defined by

m,m,

m, +m,

2. Evaluation of the moment of inertia in HCI
The bond length between H and CI in HCl is

r=1274 A.

The mass of H is m(H) =1.00794 u.
The mass of Cl is m(Cl) =35.433 u.

where u is the atomic mass unit and is given by
u=1.660539 x10™* g.

The reduced mass is

m(H)m(Cl)

HHED =+ m(Ch)

=0.980061u=1.62743 x 10%* g

The moment of inertia is
I =, =2.64144x10™ g cm?.

2. Experimental determination of /
The energy level related to the rotaion is given by

_ I +1)
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Fig.  An energy-level diagram of a 3D rigid rotator. Transitions between adjacent energy

levels generate the rotation spectrum (Townsend)

Figure shows the purely rotational absorption spectrum of HCI. Notice that the values of / are all

integral.

AE=FE —-E, :hw=hck=hc2—7[
A

or

RIl+1) RAA-D I

AE=E -E =
27 21 I

Then we have
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Fig. Plot of A (cm) as a function of 1//. The red circles denote the experimental data. The
dashed line is a least-squares fit curve.

The least squares fits of the data yields

~ 479.183x107"
!

A (cm).

When A/ =0.0479183cm (experimental data), we have
1=2.68273x107" cm? g.

which is very close to the theoretical value
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Fig.  Absorption spectra of HCI (Townsend)
Transition A v=c/A v/l Al Av
I—1—1 (microns) (10°Hz) (10°Hz) (cm) (eV)
00— De (479) (626) (626) 0.0479)  (0.0026)
1-2 243 1235 618 0.0486 0.0051
23 162 1852 617 0.0486 0.0077
34 121 2479 620 0.0484 0.0103
45 96 3125 625 0.0480 0.0129

Table Rotational absorption transition in HCl. 1IGHz= 10° Hz. 1 THz= 10'2 Hz

4. Infrared absorption spectra of HCI
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Fig. Energy level of the simple harmonics (in quantum mechanics).
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html

The combined vibrational and rotational energy of a diatomic molecule is given by

R +1)

1
En,D)=0n +>)ho+
(v)(v2) Y,

Figure shows an energy-level diagram. HCI posseses a permanent dipole moment. There is a
vibrational selection rule

An, =+%1,

for electric dipole transitions. In addition, the rotational selection rule, A/ = =1 leads to the set of
I,m) has the parity (-1)". The state

allowed vibration-rotation frequencies. Note that the state

|nv> has the parity (-1)".

The center frequency for ny = 0 to ny=1.

f= 22 —8.66x 10" Hz = 86.6 THz

T

where



1 THz= 10"> Hz

. / k . . .
Since @ = _|—, we can determine the force constant for the simple harmonics, as
U

k = po’ = u(27f)*=4.81834 x 10° dyne/cm = 480.1834 x 10> N/m
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Fig. Infrared absorption of HCI.
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html
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Figure 1: The HCI spectrum in the mid-infrared region

http://www.odinity.com/wp-content/uploads/2014/04/HCI-Spectrum.png

Vibration-Rotation Transitions =
Transitions from the ground vibrational \ 2—
state to the first excited state of HCI L= - fyomt
with a change 4j = + 1 in rotational R
angular momentum. j=3
g v=0
Transitions v=0, | 1o v=1, j-1 Transitions v=0, j to v=1, j+1
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Fig. A vibrational-rotational absorption spectrum of HCI (Townsend).

Intensity ratio

kT =25852meV  (T=300K),

haw=0.3581 ¢V,

fiw

)=9.62436x1077 .
kT

exp(—

Intensity for the transition from (ny = 1, /-1) state to (ny = 0, /) state is given by

R +1) I(I+1)B
I()=Q2l+)exp[———]= 2l + ) exp[—F],
()= (21 +1)exp[ 20k,T 1= (21 +exp| T ]
where
h2
B="—-=2.10514x 10" erg.
21
6. Maximum intensity

The maximum of the intensity is given by taking the derivative of /(/) with respect to /,
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di(l) _ xp[— W+ g 2T — B+ 20y

1=0
dl ke, T ke, T

I(I) has a peak at

21+1:1/2]€TfT=6.273 or [=2.63.

2

when 7=300 K and B :%22.10514 x 101 erg.

f Intensity

2
Fig. Intensity /()= (2/+ l)exp[—l(]i—JrTl)B] as a function of . T=300K. B = %=2.10514 X

B

101 erg
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Fig. Intensity vs I where T is changed as a parameter. T = 100 K (red), 200 K, 300 K, 400,
K,..., 900 K (purple), and 1000 K. The peak position of / shifts to the higher side as T
increases.
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