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The rotational energy are easily calculated. We can think of the molecules as a dumbdell, which 

can rotate about its center of mass. The classical energy of rotation is 
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where I is the moment of inertia and  is the angular velocity. Since the angular momentum L is  
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It follows that 
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  and the rotation energy is 
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This formula is also valid in quantum mechanics, if we use the correct quantized values 
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for 2L . Hence the rotation energy of diatomic molecule is 
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14.6 A simple model for the rotational energy is 
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where 2 ,1 ,0l ,…, ℓm ,…, l, and I is the moment of inertia. Thus 

 











0

2

]
2

)1(
exp[)12(

l

rot
I

ll
lZ

ℏ
 

 

(b) For )2/(2 ITkB ℏ  approximate the sum over l by an integral. Show that 
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How about the entropy vs temperature? 

 

(c) Make a quantitative sketch of NU /  and rotC  as functions of temperature. Does rotC  

approach the asymptotic value from above or below? 

 

 

((Solution)) 

We consider the quantum state given by ml, , where 

 

mlllml ,)1(,ˆ 222  ℏL , mlllmlLz ,)1(,ˆ 22  ℏ  

 

where m = -l, -l+1,…, l-1, and l  (2l+1, fold) 

 

The partition function for the canonical ensemble  
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where the energy eigenvalue for the state ml,  is given by 
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We define the characteristic temperature as 
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The Helmholtz free energy 
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The internal energy: 
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The heat capacity: 
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The entropy S is 
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(a) The low temperature limit ( T ) 
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(b) The high temperature limit ( T ) 
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(c) 

We make a plot of 
Bk
E

, 
Bk

C
 and 

Bk

S
 as a function of a reduced temperature 


T

. 
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((Mathematica)) 
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Clear "Global` " ;

f x , n : 2 n 1 Exp
1

x

n n 1 ;

N1 7;

ZC

n 0

N1

f
T
, n Simplify;

E1 kB T2 D Log ZC , T Simplify;

C1 D E1, T Simplify;

S1 kB Log ZC T D Log ZC , T Simplify;

Ey1
E1

kB
. T x ;

Cy1
C1

kB
. T x ;

Sy1
S1

kB
. T x ;

p1 Plot Evaluate Cy1 , x, 0, 2 ,

PlotPoints 100, PlotStyle Red, Thick ;

p2 Plot Evaluate Ey1 , x, 0, 2 ,

PlotPoints 100, PlotStyle Blue, Thick ;

p3 Plot Evaluate Sy1 , x, 0, 2 ,

PlotPoints 100, PlotStyle Green, Thick ;

p4

Graphics

Text Style "T ", Italic, Black, 10 ,

1.5, 0.3 ,

Text Style "C kB", Italic, Black, 10 ,

0.7, 1.25 ,

Text Style "E kB ", Italic, Black, 10 ,

1.2, 0.6 ,

Text Style "S kB", Italic, Black, 10 ,

1.4, 1.4 ;

Show p1, p2, p3, p4, PlotRange All



 

((Huang)) 
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APPENDIX 

Infrared absorption of HCl 

 

1. Moment of inertia for diatomic molecule 

 

 
 

Fig. A classical model of a diatomic molecule rotating about its center of mass (Townsend) 

 

 

The moment of inertia around the center of mass is given by 

 
2

22

2

11 rmrmI  . 

 

From the definition of the center of mass, it is required that 
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Suppose that the length of the bond r0 is given by 
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The moment of inertia is obtained as 
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where  is the reduced mass and is defined by 
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2. Evaluation of the moment of inertia in HCl 

The bond length between H and Cl in HCl is 

 

0r = 1.274 Å. 

 

The mass of H is m(H) = 1.00794 u. 

The mass of Cl is m(Cl) = 35.433 u. 

 

where u is the atomic mass unit and is given by 

 
2410660539.1 u  g. 

 

The reduced mass is 
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The moment of inertia is 
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2. Experimental determination of I 

The energy level related to the rotaion is given by 
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Fig. An energy-level diagram of a 3D rigid rotator. Transitions between adjacent energy 

levels generate the rotation spectrum (Townsend) 

 

Figure shows the purely rotational absorption spectrum of HCl. Notice that the values of l are all 

integral.  
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Then we have 
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Fig. Plot of  (cm) as a function of 1/l. The red circles denote the experimental data. The 

dashed line is a least-squares fit curve. 

 

The least squares fits of the data yields  

 

l

410183.479 
  (cm). 

 

When 0479183.0l cm (experimental data), we have 

 
401068273.2 I  cm2  g. 

 

which is very close to the theoretical value 
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Fig. Absorption spectra of HCl (Townsend) 

 

 
 

Table Rotational absorption transition in HCl. 1GHz= 109 Hz. 1 THz= 1012 Hz 

 

4. Infrared absorption spectra of HCl 

 



 
 

Fig. Energy level of the simple harmonics (in quantum mechanics). 

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html 

 

The combined vibrational and rotational energy of a diatomic molecule is given by 
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Figure shows an energy-level diagram. HCl posseses a permanent dipole moment. There is a 

vibrational selection rule 

 

1 vn , 

 

for electric dipole transitions. In addition, the rotational selection rule, 1l  leads to the set of 

allowed vibration-rotation frequencies. Note that the state ml,  has the parity (-1)l. The state 

vn  has the parity (-1)n.  

 

The center frequency for nv = 0 to nv=1. 
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 , we can determine the force constant for the simple harmonics, as 
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Fig. Infrared absorption of HCl. 

http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html 

 



 
 

http://www.odinity.com/wp-content/uploads/2014/04/HCI-Spectrum.png 

 

 



http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/vibrot.html 

 

 
 



 
 

Fig. A vibrational-rotational absorption spectrum of HCl (Townsend). 

 

5. Intensity ratio 

 

TkB 25.852 meV (T = 300 K), 

 

ℏ 0.3581 eV, 
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Intensity for the transition from (nv = 1, l-1) state to (nv = 0, l) state is given by 
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where 
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6. Maximum intensity 

The maximum of the intensity is given by taking the derivative of )(lI  with respect to l, 
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)(lI  has a peak at 

 

B

Tk
l B2

12  = 6.273 or l = 2.63. 

 

when T = 300 K and 
I

B
2

2
ℏ

 =2.10514 x 10-15 erg.  

 

 
 

Fig. Intensity ]
)1(

exp[)12()( B
Tk

ll
llI

B


  as a function of l. T = 300 K. 

I
B

2

2
ℏ

 =2.10514 x 

10-15 erg 

 

 

l

Intensity

2 4 6 8 10

1

2

3

4



 
 

Fig. Intensity vs l where T is changed as a parameter. T = 100 K (red), 200 K, 300 K, 400, 

K,…, 900 K (purple), and 1000 K. The peak position of l shifts to the higher side as T 

increases. 
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