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1. Spin 1/2 states in the magnetic field 

We consider the electron spin system with two energy levels in the presence of an external 

magnetic field B along the z axis. The spin magnetic moment μ  is given by 
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where g is the Landé g-factor (g = 2) for electron spin, S (= )
2
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 is the spin angular momentum, 
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  (>) is the Bohr magneton, and the charge of electron is –e (e>0). In the presence of 

the magnetic field along the z axis, we have a Zeeman energy given by 
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Noting that zzz   and zzz   in quantum mechanics, the energy level splits 

into two levels, BB . 

 

(a) The energy BB  (higher level), 

The spin state  z . The spin magnetic moment is antiparallel to the z-axis )( B .   

state. 

 

(b) The energy BB  (lower level).  

The spin state: z . The spin magnetic moment is parallel to the z-axis )( B ;   state. 

 



 
 

In this system, the partition function for the canonical ensemble is given by 
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where Zc(i) is the partition function for spin i and N is the number of spins. We assume that there 

is no interaction between spins. Since 
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we have 
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)1(1CZ  is the one-particle partition function and is given by 
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The partition function for the N site system is 
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The magnetization M is given by 
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We note that the magnetization M can be also directly derived from the definition as 
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P  and P  are probabilities for finding the magnetic moment B  in the lower energy 

level and for finding the magnetic moment B  in the upper level, respectively, 
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Then we have the magnetization as 
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which is the same as that derived using the Helmholtz free energy. For 1BB , using the 

Taylor expansion, we have 
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2. Angular momentum J state in the magnetic field 

We consider a magnetic atom with angular momentum Jℏ . Each atom has a magnetic 

moment Jμ Bg , where g is the Landé g-factor. In the presence of a magnetic field along the 

z axis, the Zeeman energy is given by 

 

z )(ˆ JBggH BB   BJBμ  

 

Since 
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jmj,  is the eigenket of the spin Hamiltonian jmj,  with the energy eigenvalue 
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where 
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and the corresponding energy level and magnetic moment for the fixed jm  are 

 

Energy level ( j mBg B ) and magnetic moment ( ) smg B  

 

)1(1CZ  is the one-particle partition function and is given by 
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where 

 

Bgjx B  

 

)( smP  is the probabilities for finding the magnetic moment ) ( jmg B  in the energy 

level ( s mBg B ) 
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Then we have the magnetization per magnetic atom as 
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or 
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leading to the final expression for the total magnetization 
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where )(xB j  is called the Brillouin function 
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((Note)) Mathematica 

 



 
 

When 1 Bgjx B , using the Taylor expansion, we have 
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The magnetic susceptibility is 
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