Magnetization with spin: the canonical ensemble
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

(Date: September 03, 2017)

1. Spin $\mathbf{1} / 2$ states in the magnetic field

We consider the electron spin system with two energy levels in the presence of an external magnetic field B along the z axis. The spin magnetic moment $\boldsymbol{\mu}$ is given by

$$
\boldsymbol{\mu}=-\frac{g \boldsymbol{S}}{\hbar} \mu_{B}=-\frac{2 \boldsymbol{S}}{\hbar} \mu_{B}=-\mu_{B} \boldsymbol{\sigma}
$$

where g is the Lande g -factor $(\mathrm{g}=2)$ for electron spin, $\boldsymbol{S}\left(=\frac{\hbar}{2} \boldsymbol{\sigma}\right)$ is the spin angular momentum, $\mu_{B}=\frac{e \hbar}{2 m c}(>)$ is the Bohr magneton, and the charge of electron is $-e(e>0)$. In the presence of the magnetic field along the z axis, we have a Zeeman energy given by

$$
\varepsilon=-\boldsymbol{\mu} \cdot \boldsymbol{B}=-\left(-\mu_{B} \boldsymbol{\sigma}\right) \cdot \boldsymbol{B}=\mu_{B} B \sigma_{z}
$$

Noting that $\sigma_{z}|+z\rangle=|+z\rangle$ and $\sigma_{z}|-z\rangle=-|-z\rangle$ in quantum mechanics, the energy level splits into two levels, $\pm \mu_{B} B$.
(a) The energy $\quad \mu_{B} B \quad$ (higher level), The spin state $|+z\rangle$. The spin magnetic moment is antiparallel to the z-axis $\left(-\mu_{B}\right) .|\downarrow\rangle$ state.
(b) The energy $\quad-\mu_{B} B$ (lower level).

The spin state: $|-z\rangle$. The spin magnetic moment is parallel to the z-axis $\left(+\mu_{B}\right) ;|\uparrow\rangle$ state.

In this system, the partition function for the canonical ensemble is given by

$$
Z_{C N}=Z_{c 1}(1) Z_{c 1}(2) \ldots Z_{c 1}(N)
$$

where $Z_{c}(\mathrm{i})$ is the partition function for spin i and N is the number of spins. We assume that there is no interaction between spins. Since

$$
Z_{c 1}(1)=Z_{c 1}(2)=\ldots=Z_{c 1}(N)
$$

we have

$$
Z_{C N}=\left[Z_{c 1}(1)\right]^{N}
$$

$Z_{C 1}(1)$ is the one-particle partition function and is given by

$$
Z_{C 1}=\exp \left(\beta \mu_{B} B\right)+\exp \left(-\beta \mu_{B} B\right)=2 \cosh \left(\beta \mu_{B} B\right)
$$

The partition function for the N site system is

$$
Z_{C N}=\left(1+e^{\beta \varepsilon_{0}}\right)^{N}
$$

The magnetization M is given by

$$
M=-k_{B} T \frac{\partial}{\partial B} \ln Z_{C N}=N \mu_{B} \tanh \left(\beta \mu_{B} B\right)
$$

We note that the magnetization M can be also directly derived from the definition as

$$
\frac{M}{N}=\mu_{B} P_{+}-\mu_{B} P_{-}
$$

P_{+}and P_{-}are probabilities for finding the magnetic moment μ_{B} in the lower energy level and for finding the magnetic moment $-\mu_{B}$ in the upper level, respectively,

$$
\begin{aligned}
& P_{+}=\frac{e^{-\left(-\beta \mu_{B} B\right)}}{Z_{c 1}}=\frac{e^{\beta \mu_{B} B}}{e^{\beta \mu_{B} B}+e^{-\beta \mu_{B} B}}, \\
& P_{-}=\frac{e^{-\beta \mu_{B} B}}{Z_{c 1}}=\frac{e^{-\beta \mu_{B} B}}{e^{\beta \mu_{B} B}+e^{-\beta \mu_{B} B}}
\end{aligned}
$$

Then we have the magnetization as

$$
\begin{aligned}
M & =N\left(\mu_{B} P_{+}-\mu_{B} P_{-}\right) \\
& =N\left[\frac{\mu_{B} e^{\beta \mu_{B} B}+\left(-\mu_{B}\right) e^{-\beta \mu_{B} B}}{e^{\beta \mu_{B} B}+e^{-\beta \mu_{B} B}}\right] \\
& =N \mu_{B} \tanh \left(\beta \mu_{B} B\right)
\end{aligned}
$$

which is the same as that derived using the Helmholtz free energy. For $\beta \mu_{B} B \ll 1$, using the Taylor expansion, we have

$$
M=\frac{N \mu_{B}^{2} B}{k_{B} T}
$$

2. Angular momentum \boldsymbol{J} state in the magnetic field

We consider a magnetic atom with angular momentum $\hbar \boldsymbol{J}$. Each atom has a magnetic moment $\boldsymbol{\mu}=-g \mu_{B} \boldsymbol{J}$, where g is the Landé g -factor. In the presence of a magnetic field along the z axis, the Zeeman energy is given by

$$
\hat{H}=-\boldsymbol{\mu} \cdot \boldsymbol{B}=-\left(-g \mu_{B} \boldsymbol{J}\right) \cdot \boldsymbol{B}=g \mu_{B} B J_{z}
$$

Since

$$
\hat{H}\left|j, m_{j}\right\rangle=\mu_{B} B m_{\mathrm{j}}\left|j, m_{j}\right\rangle
$$

$\left|j, m_{j}\right\rangle$ is the eigenket of the spin Hamiltonian $\left|j, m_{j}\right\rangle$ with the energy eigenvalue

$$
g \mu_{B} B m_{\mathrm{j}}
$$

where

$$
m_{j}=-j,-j+1, \ldots ., j \quad(2 j+1)
$$

and the corresponding energy level and magnetic moment for the fixed m_{j} are

Energy level $\left(g \mu_{B} B m_{\mathrm{j}}\right)$ and magnetic moment $\left(g \mu_{B} m_{\mathrm{s}}\right)$
$Z_{C 1}(1)$ is the one-particle partition function and is given by

$$
\begin{aligned}
Z_{C 1} & =\sum_{m_{j}=-j}^{j} e^{-\beta g \mu_{B} m_{j} B} \\
& =\sum_{m_{j}=-j}^{j} e^{-\frac{x}{j} m_{j}} \\
& =\operatorname{csch}\left(\frac{x}{2 j}\right) \sinh \left(x+\frac{x}{2 j}\right) \\
& =Z_{c 1}(x)
\end{aligned}
$$

where

$$
x=g j \beta \mu_{B} B
$$

$P\left(m_{s}\right)$ is the probabilities for finding the magnetic moment $\left(-g \mu_{B} m_{\mathrm{j}}\right)$ in the energy level $\left(g \mu_{B} B m_{\mathrm{s}}\right)$

$$
P\left(m_{j}\right)=\frac{e^{-g \beta \mu_{B} m_{j} B}}{Z_{c 1}}
$$

Then we have the magnetization per magnetic atom as

$$
\begin{aligned}
\frac{M}{N} & =\sum_{m_{s}=-j}^{j}\left(-g \mu_{B} m_{\mathrm{j}}\right) P\left(m_{j}\right) \\
& =g \mu_{B} \frac{\sum_{m_{j}=-j}^{j}\left(-m_{\mathrm{j}}\right) e^{-g \beta \mu_{B} m_{j} B}}{\sum_{m_{j}=-j}^{j} e^{-g \beta \mu_{B} m_{j} B}} \\
& =g \mu_{B} \frac{\sum_{m_{j}=-j}^{j}\left(-m_{\mathrm{j}}\right) e^{-\frac{m_{j}}{j} x}}{\sum_{m_{j}=-j}^{j} e^{-\frac{m_{j}}{j} x}}
\end{aligned}
$$

or

$$
\frac{M}{N}=g \mu_{B} j \frac{d}{d x} \ln \left(\sum_{m_{j}=-j}^{j} e^{-\frac{m_{j}}{j} x}\right)=g \mu_{B} j \frac{d}{d x} \ln Z_{c 1}(x)
$$

leading to the final expression for the total magnetization

$$
M=N g \mu_{B} j B_{j}(x)
$$

where $B_{j}(x)$ is called the Brillouin function

$$
B_{j}(x)=\frac{2 j+1}{2 j} \operatorname{coth}\left(\frac{2 j+1}{2 j} x\right)-\frac{1}{2 j} \operatorname{coth}\left(\frac{1}{2 j} x\right) .
$$

((Note)) Mathematica

Clear["Global`*"];

$$
f 1=\operatorname{Sum}\left[\operatorname{Exp}\left[-\frac{m j}{j} x\right],\{m j,-j, j\}\right] / /
$$

ExpToTrig // TrigFactor

$$
\begin{aligned}
& \operatorname{Csch}\left[\frac{x}{2 j}\right] \operatorname{Sinh}\left[x+\frac{x}{2 j}\right] \\
& h 1=D[\log [f 1], x] / / \operatorname{Simplify} \\
& \frac{-\operatorname{Coth}\left[\frac{x}{2 j}\right]+(1+2 j) \operatorname{Coth}\left[x+\frac{x}{2 j}\right]}{2 j}
\end{aligned}
$$

When $x=g j \beta \mu_{B} B \ll 1$, using the Taylor expansion, we have

$$
B_{j}(x)=\frac{j+1}{3 j} x-\frac{1}{45} \frac{(j+1)\left[(j+1)^{2}+j^{2}\right]}{2 j^{3}} x^{3}+\ldots
$$

The magnetic susceptibility is

$$
M=N g \mu_{B} j \frac{j+1}{3 j} x=N g \mu_{B} \frac{j+1}{3} g j \beta \mu_{B} B=\frac{N g^{2} \mu_{B}^{2}}{3 k_{B} T} j(j+1)
$$

