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1. Spin 1/2 states in the magnetic field
We consider the electron spin system with two energy levels in the presence of an external
magnetic field B along the z axis. The spin magnetic moment u is given by
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where g is the Landé g-factor (g = 2) for electron spin, .S (Zga) is the spin angular momentum,

Uy = Zeh (>) is the Bohr magneton, and the charge of electron is —e (e>0). In the presence of
mc

the magnetic field along the z axis, we have a Zeeman energy given by

E=—p-B=—(—py0)-B= B0,
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Noting that o, —z> = —|—z> in quantum mechanics, the energy level splits

into two levels, *+ 1B .

(a) The energy ;B (higher level),
The spin state |+ z>. The spin magnetic moment is antiparallel to the z-axis (—z). ‘J«>

state.

(b) The energy  — u,B (lower level).

The spin state: |— z> . The spin magnetic moment is parallel to the z-axis (+4;);

T> state.



I"‘BBa —HMB

(|

I'LBBa MB
In this system, the partition function for the canonical ensemble is given by
ZCN = ch (I)ch (2)261 (N)

where Z.(1) is the partition function for spin i and N is the number of spins. We assume that there
is no interaction between spins. Since

Z,()=Z,(2) = .= Z,,(N)
we have
Zey=1Z,]"
Z.,(1) is the one-particle partition function and is given by
Ze, = exp(Bu,B) + exp(~f, B) = 2cosh(fu, B).
The partition function for the N site system is
Zey = (14 ")

The magnetization M is given by

M = —kBTa%anCN = Ny, tanh(Bu,B)



We note that the magnetization M can be also directly derived from the definition as
M
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P and P are probabilities for finding the magnetic moment g, in the lower energy

level and for finding the magnetic moment — x;, in the upper level, respectively,

o B a8

P = =

+ ch eﬂ#BB +e‘ﬁ#BB ’
—PupB —PuyB
e e

P =

- eﬂ:”BB +e’ﬂﬂBB

Then we have the magnetization as

M = N(puyP, — pupP)
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= Ny tanh(fu, B)

= N[

which is the same as that derived using the Helmholtz free energy. For fu,B <<1, using the

Taylor expansion, we have

M= N,uBzB
k,T
2. Angular momentum J state in the magnetic field

We consider a magnetic atom with angular momentum #J . Each atom has a magnetic
moment u =—gu,J , where g is the Landé g-factor. In the presence of a magnetic field along the

z axis, the Zeeman energy is given by
H=-p-B=—(-gu,J) B=gu,BJ,
Since
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j,m j> is the eigenket of the spin Hamiltonian

Jj ,mj> with the energy eigenvalue

gy B m;
where
m,=—j,—j+Ll..,j (2/+1)
and the corresponding energy level and magnetic moment for the fixed m; are

Energy level ( gu, B m;) and magnetic moment ( g, m,)

Z.,(1) 1s the one-particle partition function and is given by

X X
= c¢sch(—)sinh(x + —
(2].) inh(x 2j)

= ch (x)
where
x = gjPuyB

P(m,) is the probabilities for finding the magnetic moment (—gu, m;) in the energy

level (gu,B m,)
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Then we have the magnetization per magnetic atom as
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leading to the final expression for the total magnetization

M = NguyjB;(x)

where B, (x) is called the Brillouin function
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Bj(x):

((Note)) Mathematica



Clear["Global *"];
fl-= Sum[Exp[ 3 x], {mj, -3, j}] //
ExpToTrig // TrigFactor

X X
Csch[—,} Sinh{x+ —]
2] 2]

hl = D[Log[£f1], x] // Simplify

—Coth{i,} F(1+27) Coth[x+ i,}
2] 23
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When x = gjfu,B <<1, using the Taylor expansion, we have
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The magnetic susceptibility is

j+1 i+1 Ngu’ . .
M = Ngp, j<==x = Ngp, 2== gjpu,B=—"5L5_j(j+1)
3 3 3k, T



