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Here we discuss the Schottky-type heat capacity for the two energy level systems using both the 

microcanonical ensemble and canonical ensemble. 

 

1. Schottky-type specific heat: two level system: microcanonical ensemble 

Suppose that there are two energy levels at 0  and 0 . The total number of atoms is f. 
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where l  atoms are at the energy level ( )0  and l  atoms are at the energy level ( )0  . The 

total energy E is given by 
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The number of ways to pick up l  atoms out of f atoms is 
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The entropy S is given by 
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Using the Stirling relation, we get 
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Since  lE 0 , we have 
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Fig. )/( BfkS  vs 
fk

x
B

0 . )/( BfkS  has a peak (ln2=0.693147 at x = 0.5. 

 

From the definition of temperature T, we have 
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The total energy: 
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The heat capacity 
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Fig. Schottky-type heat capacity. )/( BfkC  has a peak (0.439229) at x = 0.416778. 

 

2. Canonical ensemble for the f particle 

The partition function 
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The average energy: 
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3. Canonical ensemble for the one particle 

We consider the system with one particle. The partition function is given by 
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The probability of finding the particle at 0  is 
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The probability of finding the particle at 0  is 
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The average energy for the particle is 
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Note that 
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For the f particle systems, we have the average energy E as 
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4. Canonical ensemble for many particles 

 



 
 

Suppose that there are many energy levels ( 1 , 2 , 3 , 4 ,…) with number occupancy 

( ,...),, 321 nnn . The energy of the system is given by 
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where 
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The partition function is obtained as 
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where 
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