
Langevin function 

Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 

(Date: April 17, 2018) 

 

The classical theory of paramagnetism, which is the limit of quantum theory when J  , 

was worked out in 1905 by Paul Langevin. Colloidal ferromagnetic minerals, usually magnetite, 

dispersed in a rock are examples of the systems where the classical theory is expected to apply. 

Each atom or particle has a macroscopic magnetic moment μ , which can take any orientation 

relative to the field applied in the direction (the z axis). 

 

 

We consider a magnetic moment (vector μ ) whose direction is arbitrary. When the angle 

between the direction of μ  and the z axis is an angle  , the Zeeman energy is obtained as 
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The one-particle partition 1Z is given by 
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where   is the solid angle. The N-particle partition function is expressed by 
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Fig. Solid angle. 2 sind d     

 

We note that the total magnetization is given by 
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where x B  and N is the total number of atoms, 

 

1
( ) coth( )L x x

x
     (Langevin function). 

 

In the limit of 0x , we have 
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In the limit of x , we have ( ) 1L    

 

 
 

Fig. Langevin function ( )L x  as a function of x B . 

 

((Note)) Derivation of magnetization using the partition function 
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2. Another method 
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where 2 sind d    . Note that the probability ( )P   is expressed by 
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where A is constant, 
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((Mathematica)) 



Clear "Global` " ;

f1 Exp B Cos 2 Sin ;

Z1 Integrate f1, , 0,

4 Sinh B

B

N1
D Log Z1 , B FullSimplify

N1

B
N1 Coth B

L1 x : Coth x
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h1 Plot L1 x , x 3 , x, 0, 20 ,

PlotStyle Red, Thick , Blue, Thin ,

PlotRange 0, 20 , 0, 1.1 ;

h2 Graphics Line 0, 1 , 20, 1 ,

Text Style "x 3", Black, 12, Italic , 3, 0.8 ,

Text Style "x", Black, 15, Italic , 15, 0.05 ,

Text Style "L x ", Black, 12, Italic ,

10, 0.85 ;

Show h1, h2
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Limit L1 x , x

1

f11 Exp B Cos 2 Sin ;

f12 Exp B Cos 2 Sin Cos ;

Integrate f12, , 0,

Integrate f11, , 0,
Simplify

1

B
Coth B


