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Langevin-Debye formula
We assume that an electric dipole moment p of each molecule in the presence of an electric
field. The potential energy is given by

U=-p-E=-pEcosf

N is the number of molecules per unit volume and € is the angle between p and E. The polarization
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The polarization P is given by

P:Np<cosc9>
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and kg is the Boltzmann constant.
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For simplicity we put x = L and s =cos@. Then we have
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where L(x) is the Langevin function.

((Mathematica)) Derivation of the Langevin-Debye formula
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f1 = // Simplify
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Plot[f1l, {x, @, 5}, AxesLabel » {"x = pE/kgT", " L(x)"},
PlotStyle —» {Red, Thick}, Background —» LightGray]
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Series[f1l, {x, 0, 10}]

3 5 7 9
§—L+2X S Xy 2 X +0[x] M
3 45 945 4725 93555

For x<<1, the Langevin function is approximated as
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and the derivative dL(x)/dx at x = 0 is equal to 1/3. Using this we have a Langevin-Debye formula,
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where o =2 is called the polarizability.
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2. The use of partition function

The one-particle partition function is given by
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We substitute x =cos @, so that dx = —sin 8d@ . Thus we have
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Suppose that there are N electric dipoles in the volume V. P is the average of the total electric
dipole moment per unit volume. The isothermal dielectric susceptibility is defined by
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We note that
dF = —-S8dT — PdE

Using
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