Method of Lagrange multiplier for the canonical ensemble Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: September 25, 2017)

Here we consider a gaseous system of N non-interacting, indistinguishable particles. The total energy E and the total number of particles are fixed. Here we derive the canonical distribution by using the method of Lagrange multiplier.

Number of ensemble

Fig. The grouping of single-particle energy levels. We assume that each energy eigenstate is non degenerate for simplicity. n_i is the number of particles in the energy level ε_i .

We consider a system of N identical particles. The energy level of one particle is given by the energy level ε_i (i = 1, 2, 3, 4...;). For simplicity we assume that each energy eigenstate is non-degenerate. Note that the discussion is almost the same even if the energy eigenstate is degenerate. The number of ways to put n_i particles in the energy level ε_i (i = 1, 2, 3, 4...;) is given by

$$W = \frac{N!}{n_1! n_2! n_3! \cdots}$$

The logarithm of *W* is given by

$$\ln W = \ln N! - \sum_{i} \ln n_{i}!$$

$$\approx N \ln N - N - \sum_{i} (n_{i} \ln n_{i} - n_{i})$$

$$= N \ln N - \sum_{i} n_{i} \ln n_{i}$$

where we use the Stirling's approximation. We note that the total particle number N and the total energy E are defined by

$$N = \sum_{i} n_{i}$$
 (restraint condition)
$$E = \sum_{i} \varepsilon_{i} n_{i}$$
 (restraint condition)

We now apply the method of Lagrange multiplier to this system. For the variation $\{\delta n_i\}$

$$\delta \ln W = -\sum_{i} (\delta n_i \ln n_i + \delta n_i) = 0,$$

or

$$\sum_{i} \delta n_{i} \ln n_{i} = 0 \tag{1}$$

$$\delta N = \sum_{i} \delta n_{i} = 0$$

$$\delta E = \sum_{i} \varepsilon_{i} \delta n_{i} = 0$$
(2)

The sum [Eq.(1) + α Eq.(2) + β Eq.(3)] leads to an equation for the variation $\{\delta n_i\}$

$$\sum_{i} (\ln n_i + \alpha + \beta \varepsilon_i) \delta n_i = 0$$

For arbitrariness of δn_i , we must have (for all *i*)

$$\ln n_i + \alpha + \beta \varepsilon_i = 0$$

or

$$n_i = e^{-\alpha - \beta \varepsilon_i}$$

The constants α and β should be determined from the accessory conditions,

$$N = \sum_{i} n_{i} = \sum_{i} e^{-\alpha - \beta \varepsilon_{i}} = e^{-\alpha} \sum_{i} e^{-\beta \varepsilon_{i}}$$
$$E = \sum_{i} \varepsilon_{i} e^{-\alpha - \beta \varepsilon_{i}} = e^{-\alpha} \sum_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}}$$

The probability can be expressed by

$$P_{i} = \frac{n_{i}}{N}$$
$$= \frac{n_{i}}{\sum_{i} n_{i}}$$
$$= \frac{e^{-\alpha - \beta \varepsilon_{i}}}{e^{-\alpha} \sum_{i} e^{-\beta \varepsilon_{i}}}$$
$$= \frac{e^{-\beta \varepsilon_{i}}}{\sum_{i} e^{-\beta \varepsilon_{i}}}$$

The entropy is given by the definition

$$S = k_B \ln W$$

= $k_B [N \ln N - \sum_i n_i \ln n_i]$

Since $n_i = NP_i$

$$\frac{S}{Nk_B} = \ln N - \sum_i (P_i) \ln(NP_i)$$
$$= \ln N - \sum_i P_i (\ln N + \ln P_i)$$
$$= -\sum_i P_i \ln P_i$$

or

$$S = -Nk_B \sum_i P_i \ln P_i$$

which is a typical expression for the entropy using the probability. The constants α and β are related to the physical properties of the system. We start with

$$\ln n_i + \alpha + \beta \varepsilon_i = 0$$

leading to

$$\sum_{i} n_i (\ln n_i + \alpha + \beta \varepsilon_i) = 0$$

or

$$\sum_{i} n_{i} \ln n_{i} = -\sum_{i} n_{i} (\alpha + \beta \varepsilon_{i}) = -\alpha N - \beta U$$

Using the entropy, this equation S can be rewritten as

$$\sum_{i} n_i \ln n_i = \frac{-S + k_B N \ln N}{k_B}$$

Then we have

$$\frac{S}{k_B} = \alpha N + \beta U + N \ln N$$

or

$$S = \alpha k_B N + k_B \beta U + k_B N \ln N \tag{1}$$

From the definition of dS, we get

$$dS = \frac{1}{T}dU + \frac{P}{T}dV = \left(\frac{\partial S}{\partial U}\right)_{V}dU + \left(\frac{\partial S}{\partial V}\right)_{U}dV$$

or

$$\left(\frac{\partial S}{\partial U}\right)_{V} = \frac{1}{T}$$
⁽²⁾

since S is a function of U and V. From Eq.(1),

$$\left(\frac{\partial S}{\partial U}\right)_{V} = k_{B}\beta \tag{3}$$

it follows that

$$\beta = \frac{1}{k_B T}$$

The constant α can be obtained as follows.

$$N = e^{-\alpha} \sum_{i} e^{-\beta \varepsilon_{i}} = e^{-\alpha} Z$$

where Z is the partition function

$$Z = \sum_{i} e^{-\beta \varepsilon_i}$$

Thus we have

$$e^{\alpha} = \frac{Z}{N}$$

and

$$P_i = \frac{1}{Z} e^{-\beta \varepsilon_i}$$
 (Maxwell-Boltzmann distribution function)

2. The partition function for the degenerate case

We discuss the partition function when the energy eigenstates are degenerate. We consider the partition function for the case when the energy levels 1 and 3 are non-degenerate, but the energy level 2 is degenerate with the g-degeneracy.

Fig. One-particle energy level. The energy eigenstate ε_1 and ε_3 are non-degenerate, while the energy eigenstate ε_2 is g-degenerate.

Fig. Configuration of occupation states.

Then the partition function is obtained as

$$Z_{N} = \sum_{\substack{\{n_{1}, n_{21, \dots, n_{2g}}, \\ n_{3}\}}} \frac{(n_{1} + n_{21} + n_{22} + \dots + n_{2g} + n_{3})!}{n_{1}!(n_{21}!n_{22}!\cdots n_{2g}!)n_{3}!} \exp(-n_{1}\beta\varepsilon_{1} - n_{21}\beta\varepsilon_{21} - n_{22}\beta\varepsilon_{22} - \dots - \beta n_{2g}\varepsilon_{2g} - \beta n_{3}\varepsilon_{3})$$
$$= \{\exp(-\beta\varepsilon_{1}) + \sum_{j=1}^{g} \exp(-\beta\varepsilon_{2j}) + \exp(-\beta\varepsilon_{2})\}^{N}$$
$$= Z_{1}^{N}$$

where

$$\begin{split} n_1 + n_{21} + n_{22} + \ldots + n_{2g} + n_3 &= N \; . \\ \varepsilon_{21} &= \varepsilon_{22} = \ldots = \varepsilon_{2g} = \varepsilon_2 \end{split}$$

The one-particle partition function Z_1 is

$$Z_1 = \exp(-\beta\varepsilon_1) + \sum_{j=1}^g \exp(-\beta\varepsilon_{2j}) + \exp(-\beta\varepsilon_2)$$
$$= \exp(-\beta\varepsilon_1) + g\exp(-\beta\varepsilon_2) + \exp(-\beta\varepsilon_2)$$

since $\varepsilon_{21} = \varepsilon_{22} = ... = \varepsilon_{2g} = \varepsilon_2$.

In general, Z_1 can be expressed by

$$Z_1 = \sum_i g_i \exp(-\beta \varepsilon_i)$$

where g_i is the degeneracy for the energy level \mathcal{E}_i .

REFERENCES

E. Schrödinger, Statistical Thermodynamics (Cambridge, 1948).

A. Carter, Classical and Statistical Thermodynamics (Prentice Hall, 2001).

R.K. Pathria and P.D. Beale, Statistical Mechanics, third edition (Elsevier, 2011).