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Here we consider a gaseous system of N non-interacting, indistinguishable particles. The total
energy E and the total number of particles are fixed. Here we derive the canonical distribution by
using the method of Lagrange multiplier.
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Fig. The grouping of single-particle energy levels. We assume that each energy eigenstate is
non degenerate for simplicity. n, is the number of particles in the energy level ¢;.

We consider a system of N identical particles. The energy level of one particle is given by the
energy level ¢, (i =1, 2, 3, 4...;). For simplicity we assume that each energy eigenstate is non-

degenerate. Note that the discussion is almost the same even if the energy eigenstate is
degenerate. The number of ways to put n, particles in the energy level ¢, (i =1, 2, 3, 4...;) is

given by

N!

- n'\n,\n,! -
The logarithm of W is given by

an:InN!—Zlnnl.!
~ NlnN—N—Z(nl. Inn, —n,)

= NlnN—Znilnnl.

where we use the Stirling’s approximation. We note that the total particle number N and the total
energy E are defined by

N = Zni (restraint condition)
E= Z En, (restraint condition)

We now apply the method of Lagrange multiplier to this system. For the variation {5}1[}

SInW ==Y (énInn, +6n,) =0,

or

> on,Inn, =0 (1)
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The sum [Eq.(1) + o Eq.(2) + BEq.(3)] leads to an equation for the variation {6, |
Z(ln”i +a+ fe)on, =0

For arbitrariness of on,, we must have (for all i)
Inn, +a+ pe, =0

or

The constants « and £ should be determined from the accessory conditions,
N = Zni = Ze_“_ﬁg’ = e"“Ze_ﬂg'
E= zgie_“_ﬂg' = e‘“zgie"ﬂg"

The probability can be expressed by

R="
N




The entropy is given by the definition

S=k,InW
=ky[NInN - nInn,]

Since n, = NP,

IV = X () (V)

=InN-) B(nN +InP)

=-Y PInp

or

S=—Nk;» PInP

which is a typical expression for the entropy using the probability. The constants ¢ and S are

related to the physical properties of the system. We start with
Inn, +a+ pe, =0
leading to

> n(lnn, +a+ fe)=0
or

Zni Inn, = —an.(a + fe,)=—aN - pU

Using the entropy, this equation S can be rewritten as

-S+k;NInN
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Then we have

ki=aN+ﬂU+NlnN

B
or
S=akyN+k,pU +k;NInN (1)

From the definition of dS , we get

das =ldU+£dV =(6—Sj dU+(a—SJ dav
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since S is a function of U and V. From Eq.(1),
oS
findiy R 3
(25 -1 .
it follows that
1
p= k,T

The constant & can be obtained as follows.

N = e"“Ze_ﬂg" =e 7

where Z is the partition function

7= Zeiﬂ‘g"



Thus we have

« Z
e’ =—
N
and
P= %eﬁ ¢ (Maxwell-Boltzmann distribution function)
2. The partition function for the degenerate case

We discuss the partition function when the energy eigenstates are degenerate. We consider
the partition function for the case when the energy levels 1 and 3 are non-degenerate, but the
energy level 2 is degenerate with the g-degeneracy.
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Fig.  One-particle energy level. The energy eigenstate ¢, and &, are non-degenerate, while the

energy eigenstate &, is g-degenerate.
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g.  Configuration of occupation states.

Then the partition function is obtained as

(n,+n, +ny,+...+n,, +n)!
Zy= z o 1 1 | £ : exp(—m, S, = 1y €y — Ny €5y — -+ = Py, &5, — PsE3)
(Mg, n\(ny,\ny,- -nzg.)n3.
ny}
N N
= {exp(-pe)) + zexp(_ﬁgzj) +exp(—pfe,)}
j=1
=z
where

n+ny 0y +.tny, +ny=N.
£y =Ep=..=8, =&
The one-particle partition function Z, is
g
Z, =exp(—fe) + zexp(_ﬁgzj) +exp(—pe,)
j=1

= eXp(_ﬁgl) +g exp(_ﬂgz) + exp(—,b’az)

SinCe &, =&y, =...=&,, =&,.

In general, Z, can be expressed by
Z,=) g exp(-pe)

where g, is the degeneracy for the energy level ¢, .
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