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Here we consider a gaseous system of N non-interacting, indistinguishable particles. The total 

energy E and the total number of particles are fixed. Here we derive the canonical distribution by 

using the method of Lagrange multiplier. 
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Fig. The grouping of single-particle energy levels. We assume that each energy eigenstate is 

non degenerate for simplicity. in  is the number of particles in the energy level i . 

 

We consider a system of N identical particles. The energy level of one particle is given by the 

energy level i  (i = 1, 2, 3, 4…;). For simplicity we assume that each energy eigenstate is non-

degenerate. Note that the discussion is almost the same even if the energy eigenstate is 

degenerate. The number of ways to put in  particles in the energy level i  (i = 1, 2, 3, 4…;) is 

given by 
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The logarithm of W is given by 
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where we use the Stirling’s approximation. We note that the total particle number N and the total 

energy E  are defined by 
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We now apply the method of Lagrange multiplier to this system. For the variation  in  
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The sum [Eq.(1) +  Eq.(2) +  Eq.(3)] leads to an equation for the variation  in  
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For arbitrariness of in , we must have (for all i) 
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The constants  and   should be determined from the accessory conditions,  
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The probability can be expressed by 
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The entropy is given by the definition  
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Since ii NPn   
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or 
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which is a typical expression for the entropy using the probability. The constants   and   are 

related to the physical properties of the system. We start with 
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leading to 
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Using the entropy, this equation S can be rewritten as 
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Then we have 
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From the definition of dS , we get 
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since S is a function of U and V. From Eq.(1),  
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it follows that 
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The constant  can be obtained as follows. 
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where Z is the partition function 
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Thus we have 
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 (Maxwell-Boltzmann distribution function) 

 

2. The partition function for the degenerate case 

We discuss the partition function when the energy eigenstates are degenerate. We consider 

the partition function for the case when the energy levels 1 and 3 are non-degenerate, but the 

energy level 2 is degenerate with the g-degeneracy. 

 

 
 

Fig. One-particle energy level. The energy eigenstate 1  and 3  are non-degenerate, while the 

energy eigenstate 2  is g-degenerate. 
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Fig. Configuration of occupation states. 

 

Then the partition function is obtained as 
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where 
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The one-particle partition function 
1Z  is 
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since 222221 ...   g . 

In general, 
1Z  can be expressed by 
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where ig  is the degeneracy for the energy level i . 
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