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We now consider the Boltzmann factor for the kinetic energy of free particles with a mass m. We
derive the form of Maxwell-Boltzmann distribution function/

The kinetic energy of the particle is given by
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Fig.  Velocity space. The kinetic energy is the same for the different state ( v - v+ dv).
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The probability of finding the particles between v and v+dv is

2
4mv*dvexp(— pmv
f)dv =— 2

—.
I4ﬂv2dv exp(— ’Bﬂ)
0 2

)

Here we have
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The Maxwell-Boltzmann distribution function is
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The average velocity:
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The variance:
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This can be rewritten as

%m<v2 > = %kBT (equi-partition theorem)

The root-mean square velocity is

What is the most probable velocity in which f(v) takes a maximum.
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Fig. Plot of the normalized f(v)/ f,

max

as a function of a normalized v/vmp.

Green: most probable speed (Vinp)
Blue: averaged speed (Vavg)
Brown: root-mean squared speed (Vims)
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((Example)) Neutron (obeying the Maxwell Boltzmann distribution)



(a) T=300K.

E= lmnvp2 =25.852 meV, A= h . 1.77885 A
2 my,
(b) T =20 K (liquid hydrogen or deuterium)
1 2 h
E=—my,~ =1.723472 meV, A= =6.8895 A
2 m,v,

((Note-1)) The degeneracy of the state

The Boltzmann factor is given by
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Each states with the velocity having v and v+ dv, has the same Boltzmann factor. In other

words, there is a degeneracy of states 4 °dv .

((Note-2))  Definition of f(v)
N = j N(v)dy = j 40 N(v)

or
1= j 47zv2dv% = j Al dvin(v) = j F(v)dv

where

N(v)

fW=4nn@v),  A)= N

N is the total number of particles.

((Mathematica))
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vav=J~ vfldv // Simplify[#, {m>0, B >0}] &

vsq =J vif1dv // Simplify[#, {(m>0, B>0}] &
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APPENDIX Gauss integrals
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We take a derivative of this equation with respect to a
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