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In a paramagnet, the magnetic moments of electron spins are not aligned. The direction of the 

magnetic moment is random. So the total magnetization is zero. However, when the magnetic 

field is applied, the situation changes. The magnetization (the magnetic moment per volume) M 

appears along the direction of the magnetic field, and obeys the Curie law, 
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The thermodynamic and magnetic properties of the paramagnet are discussed using two 

approaches (the microcanonical ensemble and the canonical ensemble). The entropy is described 

by a scaling function of only a variable TB / . This property of the entropy is used for the cooling 

of the system (isentropic demagnetization). 

 

1. Approach from the microcanonical ensemble 

We consider the electron spin system with two energy levels in the presence of an external 

magnetic field B along the z axis. The spin magnetic moment μ  is given by 
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charge of electron is –e (e>0). In the presence of the magnetic field along the z axis, we have a 

Zeeman energy given by 
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Noting that zzz   and zzz   in quantum mechanics, the energy level splits 

into two levels, BB . 

 

(a) The energy BB  (higher level), 

The spin state  z . The spin magnetic moment is antiparallel to the z-axis )( B .   

state. 



 

(b) The energy BB  (lower level).  

The spin state: z . The spin magnetic moment is parallel to the z-axis )( B ;   state. 

 

 
 

Suppose that 

 

NNN    

 

N: the total number of spins. 

N  the number of spin magnetic moment  parallel to the magnetic field. 

N  the number of spin magnetic moment antiparallel to the magnetic field. 

 

The total magnetic moment M is 

 

sNNM BBB  2  . 

 

The total energy E is given by 
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Here we introduce the excess spin number s. 
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So the energy E is expressed by 
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The number of ways for choosing N  spins and 


N  spins out of N spins (identical) is given by 
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Using the Stirling relation, the entropy can be evaluated as 
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Using the relation, 
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we have 
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Note that the total magnetization is related to the total energy as 
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Then we have 
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When 1BB , we get 
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showing the Curie law, where 
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((Note)) 
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For 1x ,   xx tanh . 

 

 



 
 

Fig. Scaling plot of the magnetization. The saturation magnetization is NB; y = 1. 

 

2. Approach from the canonical ensemble 

(a) Thermodynamic properties: F, G, E and S 

The N- partition function is given by 
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where N is the number of spins. 1CZ  is the one-particle partition function and is given by 
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The Helmholtz free energy F: 
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Since SdTPdVdF  , the pressure P is obtained as 
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The internal energy E: 
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(b). Magnetization M 

 

In the present system, the Gibbs energy is equal to F  (M. Kardar, Statistical Physics 

of Particles, Cambridge, 2007, p.117). We note that 
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Here we use the replacement ; 
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Then we have 
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So the magnetization is given by 
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This expression can be directly derived from a view point of quantum mechanics (see 

the Appendix). The magnetization M can be also directly derived from the definition as 
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where P  and P  are probabilities given by 
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Then we have 
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showing the Curie law. Note that 
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Fig. Scaling plot of the magnetization. The saturation magnetization is NB; y = 1. 

 

(c) Entropy S 

The entropy S: 
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or 
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The entropy S is expressed by a scaling function of B/T. This is an essential point to this 

system. 

We introduce the characteristic temperature T0 and magnetic field B0 as 
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Then we have 
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We make a plot of 
Nk

S

B

 as function of t, where b is changed as a parameter. In the limit 

of t , the entropy reached 
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Fig. Plot of 
Nk

S

B

 as a function of a reduced temperature t (= T/T0), where the reduced 

magnetic field b (= B/B0) is changed as a parameter. Note that 00 TkB BB  . The 

highest value of y is ln2 = 0.693147. 
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Noting that 1/ tbe  and 1/  tbe , we can approximate the expression of entropy 

as 

 

 
tb

tbtb

tb

tb
tbtb

tbtb

tbtb
tbtb

B

e
t

b

e
t

b
e

t

b

e

e

t

b
ee

ee

ee

t

b
ee

t

b

t

b

t

b

Nk

S

/2

/2/2

/2

/2
/2/

//

//
//

2

21

1

1
)]1(ln[

)ln(

)tanh()]cosh(2ln[

















































 

 

where we use the approximation 
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In the limit of 0t , we have 
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Fig. The entropy of )/( BNkS  as a function of t. b = 1. The system settles into ground 

state; the multiplicity becomes 1: and the entropy goes to zero. 

 

4. Isentropic demagnetizion 

The principle of magnetically cooling a sample is as follows. The paramagnet is first 

cooled to a low starting temperature. The magnetic cooling then proceeds via two steps.  

Suppose that the spin system is kept at temperature T1 in the presence of magnetic 

field B1. The system is insulated (S = 0) and the field removed, the system follows the 

constant entropy path AB, ending up at the temperature T2 (isentropic process). If B is 

the effective field that corresponds to the local interactions, the final temperature T2 

reached in an isentropic demagnetization process is 
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since the entropy is a function of only B/T.  
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Fig. Point A (tA = 4.29726, yA = 0.3) on the line with 1
0


B

BA . Point B (tB= 0.859452, , 

yA = 0.3) on the line with 5
0


B

BB . The path AB is the isentropic process (y = 0.3). 
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5. Specific heat 

The heat capacity is given by 
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Using the energy gap parameter 
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Fig. Plot of the heat capacity C/kB as a function of T/. It show a peak at T/ = 

0.416778. 

 

The heat capacity as a function of temperature, has a peak at 

 

416778.0

T

. 

 

((Schottky anomaly)) 

The Schottky anomaly is an observed effect in solid state physics where the specific 

heat capacity of a solid at low temperature has a peak. It is called anomalous because the 

heat capacity usually increases with temperature, or stays constant. It occurs in systems 

with a limited number of energy levels so that E(T) increases with sharp steps, one for 

each energy level that becomes available. Since Cv =(dE/dT), it will experience a large 

peak as the temperature crosses over from one step to the next. 
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_______________________________________________________________________ 

APPENDIX Quantum mechanical treatment for the expression of Magnetization 

The spin Hamiltonian for the spin 1/2 system in the presence of a magnetic field 

along the z axis, is given by the Zeeman energy as 

0.5 1.0 1.5 2.0 2.5 3.0
x=
T

D

0.1

0.2

0.3

0.4

y=
C

NkB



 

zB
B BH 


ˆ)ˆ2

(ˆˆ  BSBμ
ℏ

 

 

where zB
B 


ˆˆ2

ˆ  Sμ
ℏ

 is the spin magnetic moment operator. The on-particle 

partition function is given by 
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We can evaluate the average magnetic moment as 
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The magnetization for the N particle system, we have 
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Bohr magneton 
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Nuclear magneton 
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