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In a paramagnet, the magnetic moments of electron spins are not aligned. The direction of the
magnetic moment is random. So the total magnetization is zero. However, when the magnetic
field is applied, the situation changes. The magnetization (the magnetic moment per volume) M
appears along the direction of the magnetic field, and obeys the Curie law,
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The thermodynamic and magnetic properties of the paramagnet are discussed using two
approaches (the microcanonical ensemble and the canonical ensemble). The entropy is described
by a scaling function of only a variable B/T . This property of the entropy is used for the cooling
of the system (isentropic demagnetization).

1. Approach from the microcanonical ensemble
We consider the electron spin system with two energy levels in the presence of an external
magnetic field B along the z axis. The spin magnetic moment g is given by
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where § (Zga) is the spin angular momentum, g, :;—h (>) is the Bohr magneton, and the
mc

charge of electron is —e (e>0). In the presence of the magnetic field along the z axis, we have a
Zeeman energy given by

E=—p-B=—(-py0)-B=pBo,

Noting that az|+ z> =|+ z> and o,

—z> = —|—z> in quantum mechanics, the energy level splits

into two levels, + y,B .

(a) The energy ;B (higher level),
The spin state |+ z>. The spin magnetic moment is antiparallel to the z-axis (—g;). ‘~L>

state.



(b) The energy  — ;B (lower level).

The spin state: |— z> . The spin magnetic moment is parallel to the z-axis (+z;);
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Suppose that
N: the total number of spins.

N,  the number of spin magnetic moment parallel to the magnetic field.

N,  the number of spin magnetic moment antiparallel to the magnetic field.

The total magnetic moment M is
M = pyNy — N | =245 .

The total energy E is given by
E=-u,B(N,—N,)

Here we introduce the excess spin number s.
Ny—-N, =2s.

Then we have

T> state.



So the energy E is expressed by
E=-2su,B

The number of ways for choosing N, spins and N . spins out of N spins (identical) is given by
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Using the Stirling relation, the entropy can be evaluated as
S=ky;InW(N,s)

= k,[In N- ln(% +5)- ln(% —9)]

:kB[NlnN—N—(%+s)ln(§+s)+§+s—(%—s)ln(%—s)+%—s]

:kB[NlnN—(%+s)ln(%+s)—(%—s)ln(%—s)]

or
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Using the relation,
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we have



E = —Nu,Btanh(Bu,B)

Note that the total magnetization is related to the total energy as
E=-MB

Then we have
M = Ny, tanh(Su,B)

When fu,B<<1, we get

Ny g _Cp

M =N, B=
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showing the Curie law, where

o=y
kB
((Note))
tanh x = ex — eﬁ
e +e

For x <<1, tanhx = x.
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Fig.  Scaling plot of the magnetization. The saturation magnetization is Nug; y = 1.
2. Approach from the canonical ensemble

(a) Thermodynamic properties: F, G, E and S
The N- partition function is given by

ZCN = ZCIN

where N is the number of spins. Z, is the one-particle partition function and is given by
Zey = exp(Bu,B) + exp(— i, B) = 2cosh(fu,B) .

The Helmholtz free energy F:
F=E-ST=-k,;TInZ_., =—-Nk;TInZ. =—Nk,T In[2cosh(fu,B)]

Since dF =—PdV — SdT , the pressure P is obtained as

p:_(a_Fj ~0
ov ),

The internal energy E:

0 0
E= _ﬁanCN = —NﬁanC1 = —Nu,Btanh(Bu,B)



(b). Magnetization M

In the present system, the Gibbs energy is equal to F' (M. Kardar, Statistical Physics
of Particles, Cambridge, 2007, p.117). We note that

dG =VdP - SdT
Here we use the replacement ;
P> B, V—>-M
Then we have
dG =-MdB - SdT
So the magnetization is given by

oG oF 0
M = —g = —E = _kBTEInZCN = N,LlB tanh(,b’,uBB)

This expression can be directly derived from a view point of quantum mechanics (see
the Appendix). The magnetization M can be also directly derived from the definition as

M = N(uyP, = ppP)
where P_and P are probabilities given by
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Then we have
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M = N[ = Ny tanh( S, B)

In the limit of “25 50,
B
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showing the Curie law. Note that
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and for 0 <x<<1, tanhx:x—%+%x5 +0(x7)
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Fig.  Scaling plot of the magnetization. The saturation magnetization is Nug; y = 1.

(c) Entropy S
The entropy S:

U

F olnZz.,
S _?_?_kg(ﬁU_ﬁF) _kB(_ﬂ—
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or
S = k, N[In(2 cosh( i, B) ~ Sy, B tanh( 51, B)]

or



S In[2cosh(eB )y HsB tann#sBy
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The entropy S is expressed by a scaling function of B/T. This is an essential point to this

system.
We introduce the characteristic temperature 7o and magnetic field Bo as

HpBy = kT,

Then we have

S in2cosh(?eBy - #sB unn(teB)
k,N k,T kT k, T

=In[2 cosh(é)] - % tanh(%)

where
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We make a plot of S as function of ¢, where b is changed as a parameter. In the limit
B

of t —» w0, the entropy reached

S in(2s+1)=1n2=0.693147.
k,N



Fig. Plot of S as a function of a reduced temperature ¢ (= 7/70), where the reduced
B

magnetic field b (= B/Bo) is changed as a parameter. Note that y,B, =k,T; . The
highest value of y is In2 = 0.693147.

3. Proof of — 0 in the limitof 1 > 0

B

Noting that ¢””* >>1 and e <<1, we can approximate the expression of entropy
as

S =1In[2 cosh(%)] - ? tanh(?)
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where we use the approximation
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In(l+x)=x, ~1-2x for 0<x<<1

In the limit of ¢t — 0, we have

limS =0

t—0
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Fig.  The entropy of S/(Nk,) as a function of . b = 1. The system settles into ground

state; the multiplicity becomes 1: and the entropy goes to zero.

4. Isentropic demagnetizion

The principle of magnetically cooling a sample is as follows. The paramagnet is first
cooled to a low starting temperature. The magnetic cooling then proceeds via two steps.

Suppose that the spin system is kept at temperature 71 in the presence of magnetic
field Bi. The system is insulated (AS = 0) and the field removed, the system follows the
constant entropy path AB, ending up at the temperature 7> (isentropic process). If Ba is
the effective field that corresponds to the local interactions, the final temperature 7>
reached in an isentropic demagnetization process is

L_5
R

BA

since the entropy is a function of only B/T.
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Fig. Point A (ta =4.29726, ya = 0.3) on the line with % =1. Point B (3= 0.859452, ,

0

va = 0.3) on the line with By _ 5. The path AB is the isentropic process (y = 0.3).

Note that
L _ 1y

BA BB.
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5. Specific heat
The heat capacity is given by

C — (luBB)Z SechZ(luBB)
Nk, kT k,T

Using the energy gap parameter
kyA=2u,B

C
Nk,

1 A 5 eT/A
7wy

2 2 A 1 A 2 2, A
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Fig. Plot of the heat capacity C/ks as a function of 7/4. It show a peak at 7/4 =
0.416778.

The heat capacity as a function of temperature, has a peak at
I 0.416778.
A

((Schottky anomaly))

The Schottky anomaly is an observed effect in solid state physics where the specific
heat capacity of a solid at low temperature has a peak. It is called anomalous because the
heat capacity usually increases with temperature, or stays constant. It occurs in systems
with a limited number of energy levels so that £(7) increases with sharp steps, one for
each energy level that becomes available. Since Cv =(dE/dT), it will experience a large
peak as the temperature crosses over from one step to the next.
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APPENDIX Quantum mechanical treatment for the expression of Magnetization
The spin Hamiltonian for the spin 1/2 system in the presence of a magnetic field
along the z axis, is given by the Zeeman energy as



fi =i B=~(-2428). B~ 85

2u, 4 A . . .
He § - Uzo. 1s the spin magnetic moment operator. The on-particle

where f=-—

partition function is given by
Zey = Trle™ = Tr{e 7%

We can evaluate the average magnetic moment as

| ) N Bu.BG
_Ea_BZCI =Tr{p,6.e7 "7 ] = Zc1</“z>

or

1 0
<,uz> = _Eﬁlnza

The magnetization for the N particle system, we have

0
M =N(u,)= —NkBTEInZCI :

Bohr magneton

1y =9.27400915x 102! emu

% =6.71713 x 105 (K/Oe)

B
Nuclear magneton

1y =5.050783699 x 10* emu



% =3.65826 x 108 (K/Oe)

B
scaling
universality



