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Here we discuss the Planck distribution function. It describes the spectrum of the electromagnetic 

radiation (photons) in thermal equilibrium within a cavity (black body). It is often called the black 

body radiation. The Planck distribution was the first application of quantum thermal physics. 

 

1. Simple harmonics system with f oscillators: canonical ensemble 

We consider a system consists of f harmonic oscillators (with the same  ) 

 

For each oscillator, the energy is quantized as 
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where n  is the eigenstate of the Hamiltonian with the energy eigenvalue )
2
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integer; n = 0, 1, 2, ….  

 

Suppose that mi is the number of oscillators with the energy i . 

The total number of simple harmonic oscillators is 
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State 0  with energy 0  level m0 oscillators 

State 1  with energy 1  level m1 oscillators 

………………………………….. 

 



 
 

The total energy for this configuration is 
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The way to choose mi oscillators in the same state i  is evaluated as 
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where these oscillators are distinguishable. Then the partition function for the simple harmonics 

can be obtained as 
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where 
TkB

1
 . fmmm  ,...210   means the condition of total oscillator number being kept constant. 

We note that )(1 CZ  is the partition function for the one oscillator system. 
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The internal energy is 
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The first term is the zero-point energy. 

 

2. Method originally proposed by Planck: micro-canonical ensemble 

We consider the f –independent oscillators. The total energy is given by 
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where i = 1, 2, …, f 

 

For example, 

 



f = 5, M = 11 

 

n1 = 2; n2 = 5, n3 = 0, n4 = 3, n5 = 1 corresponding to 1 ,3 ,0 ,5 ,2 . 

 
 

which is equivalent to 

 

 
 

by replacing the bars by the black dots.  Another example is 

 

n1 = 2; n2 = 3, n3 = 3, n4 = 0, n5 = 3 corresponding to 3 ,0 ,3 ,3 ,2 , where M = 11 

 

n1 = 1; n2 = 7, n3 = 0, n4 = 3, n5 = 0 corresponding to 0 ,3 ,0 ,7 ,1 , where M = 11 

 

Thus the number of ways is 
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Here we apply the Stirling’s approximation,  
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The entropy of this system is 
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where 
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The temperature T is defined by 
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((Note)) 

This method was originally discussed by Planck in the following paper; 

 

M. Planck, Ann. Phys. 4, 553 (1901) 

On the Law of the Energy Distribution in the Normal Spectrum 

 

3. Canonical ensemble for the system with one oscillator 

For the simple harmonic oscillator with the angular frequency  
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with n = 0, 1, 2, …. The Hamiltonian is defined by 
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The partition function is 

 
1

( )ˆ
2

1

0 0

[ ] n
n

H

C

n n

Z Tr e e e
 

   

 

   
ℏ

 

 

or 

 
1

( )
2

1

0

2

0

2

2

( )

1

1

n

C

n

n

n

Z e

e e

e

e

e

e

 

 
 

 

 

 

 

  



 





















ℏ

ℏ

ℏ

ℏ

ℏ

ℏ

ℏ

 

 

or 

 

2

1
1

1

2sinh( )
2

1
cosech( )

2 2

C

e
Z

e

 

 

 

 








ℏ

ℏ

ℏ

ℏ

 

 

Note that 
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The average energy of a single oscillator is 
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The heat capacity: 
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For N oscillators with the same  , we have 
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Note that there is no additional factor such as (1/N!) for the system such as simple harmonics. The 

reason is as follows. The element of the system is localized by its mechanics. For the free particles, 

the element of the system is not localized by its mechanics.  

 

4. Thermodynamic properties 

The Helmholtz free energy is given by 
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using the partition function 1CZ . The internal energy is 
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The entropy S: 
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The entropy S can be expressed as 
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The heat capacity: 
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Fig. Heat capacity 
BNk

C
 vs 
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Tk

x B  (quantum mechanics). 
BNk

C
 tends to 1.0 as T , as is 

predicted from the energy partition theorem. 

 

Energy fluctuation 
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((Mathematica)) 
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5. Quantized electromagnetic field of photon 

We consider a system with photon modes with the angular frequency k . The state of photon 

is given by the mode k , where k is the wave vector. The system consists of many modes denoted 

by k. The value of k  is different for different k.  

The partition function is obtained as 
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where 1( , )CZ k  is the one-particle partition function for the state k . 
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Fig. Energy dispersion of photon with the discrete wave number. 

 

Note that 
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The internal energy U is given by 
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The first term is the zero-point energy. Using the Planck’s distribution function  
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We note that photons are bosons. The number 
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n  is given by the Bose-Einstein 

distribution with the chemical potential 0  . The reason for this will be given in the discussion 

of the chemical potential of photon zero (later). 

The entropy is 
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This distribution function can be used to discuss the black-body problem (Stefan-Boltzmann law). 

 

ckc  kk    (energy dispersion) 
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The factor 2 comes from the two independent polarization. We drop the zero point energy. Then 

the total energy is rewritten as 
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   (Stefan-Boltzmann law of radiation). 

 

Note that 
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The energy density: 
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So the spectral density is 
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Then we have 
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Wien’s law: 
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u() has a maximum when 
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The solution of Eq.(1) is given by 
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6. Photon number density 

 

The photon number density is evaluated from 

 

 
1

  4
)2(

2 2

2

2

3  
 


 ℏe

dkkV
ndkk

V
nN k k

k

 

 

as 

 

3

332

3

0

2

332

32

32
40411.2

1

)(
 

1

1
T

c

k

e

dxx

c

Tk

e

d

cV

N
n B

x

B

ℏℏ
ℏ 


  





 


 

 

where 

 





0

2

1xe

dxx
 = 2(3)=2.40411 

 

At T = 2.73 K,  n = 412.7/cm3 

 

At T = 3000 K, n 5.4775 x 1011/cm3 

 

Then we have the average energy per photon  
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For T = 2.73 K (CMB) 
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For T = 6000 K (Sun) 
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7. Summary 
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APPENDIX 

Canonical ensemble for the f- simple harmonics 

 

The one-oscillator partition function is given by 
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The f-oscillator partition function is given by 
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when ℏ ex . The partition function for the f-harmonic oscillators can be rewritten as 
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where 
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The multiplicity (degeneracy) for the mE  state is 
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and the energy for the mE  state is given by 
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((Mathematica)) 

 

 
 

Clear "Global` " ; g f , m :
f m 1

f 1 m
;

eq1 Series
1

1 x

15

, x, 0, 20

1 15 x 120 x
2

680 x
3

3060 x
4

11628 x
5

38 760 x
6

116 280 x
7

319 770 x
8

817 190 x
9

1 961256 x
10

4 457400 x
11

9 657700 x
12

20 058300 x
13

40 116600 x
14

77 558760 x
15

145 422675 x
16

265 182525 x
17

471 435600 x
18

818 809200 x
19

1 391975 640 x
20

O x
21

A1 n : Coefficient eq1, x, n ;

list1 Table n, g 15, n , A1 n , n, 0, 20 ;

Prepend Table n, g 15, n , A1 n , n, 0, 20 ,

"n", " g f 15,n ", "coefficient x
n
"

TableForm



 
 

n g f 15,n coefficient x
n

0 1 1

1 15 15

2 120 120

3 680 680

4 3060 3060

5 11628 11628

6 38760 38760

7 116280 116280

8 319770 319770

9 817190 817190

10 1961 256 1961 256

11 4457 400 4457 400

12 9657 700 9657 700

13 20058 300 20058 300

14 40116 600 40116 600

15 77558 760 77558 760

16 145422 675 145422 675

17 265182 525 265182 525

18 471435 600 471435 600

19 818809 200 818809 200

20 1391 975640 1391 975640


