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Here we discuss the Planck distribution function. It describes the spectrum of the electromagnetic
radiation (photons) in thermal equilibrium within a cavity (black body). It is often called the black

body radiation. The Planck distribution was the first application of quantum thermal physics.

1. Simple harmonics system with f oscillators: canonical ensemble
We consider a system consists of f harmonic oscillators (with the same @)

For each oscillator, the energy is quantized as
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where |n> is the eigenstate of the Hamiltonian with the energy eigenvalue &, = hw(n + %) .nis the

integer; n=0,1,2, ....

Suppose that m; is the number of oscillators with the energy &, .

The total number of simple harmonic oscillators is
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The total energy for this configuration is
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where these oscillators are distinguishable. Then the partition function for the simple harmonics
can be obtained as
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where [ = T Omemims s means the condition of total oscillator number being kept constant.
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We note that Z,(f) is the partition function for the one oscillator system.
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v_1
f 2 e —1

The first term is the zero-point energy.

2. Method originally proposed by Planck: micro-canonical ensemble
We consider the f—independent oscillators. The total energy is given by
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For example,
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by replacing the bars by the black dots. Another example is
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n1=2;n2=3,n3=3, ns=0, ns =3 corresponding to |2>, 3>, where M =11
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ni=1;n2=7,n3=0,ns=3, ns =0 corresponding to O> , where M =11

Thus the number of ways is
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Here we apply the Stirling’s approximation,
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The entropy of this system is
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The temperature 7 is defined by
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This method was originally discussed by Planck in the following paper;

M. Planck, Ann. Phys. 4, 553 (1901)
On the Law of the Energy Distribution in the Normal Spectrum

3. Canonical ensemble for the system with one oscillator
For the simple harmonic oscillator with the angular frequency @
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with n=0,1, 2, .... The Hamiltonian is defined by

The partition function is
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Note that
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The average energy of a single oscillator is
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For N oscillators with the same @, we have
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Note that there is no additional factor such as (1/N!) for the system such as simple harmonics. The
reason is as follows. The element of the system is localized by its mechanics. For the free particles,
the element of the system is not localized by its mechanics.

4. Thermodynamic properties
The Helmholtz free energy is given by
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using the partition function Z,. The internal energy is
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Fig. Heat capacity % Vs X = (quantum mechanics). < tends to 1.0 as T — o0, as is
B @ B

predicted from the energy partition theorem.

Energy fluctuation
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((Mathematica))
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Clear["Global %"]; F1 = NkBTLog[E Sinh[ZkBT]];
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El=-kBT D[—kBT , T] // Simplify
S1=-D[F1, T] // Simplify
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S. Quantized electromagnetic field of photon
We consider a system with photon modes with the angular frequency @, . The state of photon

is given by the mode |k> , where k is the wave vector. The system consists of many modes denoted

by k. The value of @, is different for different &.

The partition function is obtained as
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where Z ., (k, ) is the one-particle partition function for the state |k> .



Fig.  Energy dispersion of photon with the discrete wave number.
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The internal energy U is given by
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The first term is the zero-point energy. Using the Planck’s distribution function
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we have
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We note that photons are bosons. The number <nk> = " is given by the Bose-Einstein

1
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distribution with the chemical potential @ = 0. The reason for this will be given in the discussion

of the chemical potential of photon zero (later).
The entropy is
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This distribution function can be used to discuss the black-body problem (Stefan-Boltzmann law).

W, = c|k| =ck (energy dispersion)
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The factor 2 comes from the two independent polarization. We drop the zero point energy. Then
the total energy is rewritten as
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The energy density:
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— (k,T)* (Stefan-Boltzmann law of radiation).
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The solution of Eq.(1) is given by

x=4.96511
or
max = 028977 (A in the units of cm)
T(K)
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When 7'= 6000 K (sun), 4, =483nm.



6. Photon number density

The photon number density is evaluated from
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Then we have the average energy per photon
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u - -22
N =2.70119k,7=1.01813 x 10~ J. (average energy per photon)



For 7= 6000 K (Sun)

% =2.70119k,T=2.23764x 10" J. (average energy per photon)
7. Summary
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c
7k,
Oy = 5 (Stefan-Boltzmann constant)
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APPENDIX
Canonical ensemble for the f- simple harmonics

The one-oscillator partition function is given by
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The f-oscillator partition function is given by
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when x = e ”". The partition function for the f~harmonic oscillators can be rewritten as
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where

(see the proof using Mathematica below).
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The multiplicity (degeneracy) for the |Em> state is
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where 5 fho is the zero point energy.



((Mathematica))

(f+m-1)1
(£-1)tm:t '’

Clear["Global *"]; g[f_ , m_]

1 \15
eql:Series[(l—) , {x, 0, 20}]

1+15x+120x°+680x°+3060x" +11628 x°+
38760 x°+116280x  +319770x° +817190x +
1961256 %% +4457400x' +9657700 %™ +
20058300 x> +40116600x™* + 77558760 x"° +
145422675 %% +265182525 %' + 471435600 x*° +
818809200 x' + 1391975640 x°° + 0[x]*!

Al[n_ ] := Coefficient[eql, x, n];
listl = Table[{n, g[15, n], A1l[n]}, {n, O, 20}];

Prepend[Table[{n, g[15, n], Al[n]}, {n, O, 20}],
"n", " g[£f=15,n]", "coefficient(x")"}] //
TableForm
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g[f=15,n]
1

15

120

680

3060
11628
38760
116280
319770
817190
1961256
4457400
9657700
20058 300
40116 600
77558760
145422 675
265182525
471435600
818809200
1391975640

coefficient (x")

1

15

120

680

3060
11628
38760
116280
319770
817190
1961256
4457400
9657700
20058 300
40116 600
77558760
145422675
265182 525
471435600
818809 200
1391975640



