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Blackbody problem: Maxwell's equation 

Masatsugu Sei Suzuki 

Department of Physics, SUNY at Binghamton 

(Date: September 03, 2018) 

 

One of the most puzzling phenomena around 1900 was the spectral distribution of 

blackbody radiation. A blackbody is an ideal system that absorbs all the radiation incident 

on it. Max Planck proposed his theory that could explain the experimental data at all 

wavelengths. He assumed that the energy emitted and absorbed by the blackbody is not 

continuous, but is instead emitted or absorbed in quanta. The size of an energy quantum 

is proportional to the frequency of the radiation. 

 

________________________________________________________________________ 

Max Planck (April 23, 1858 – October 4, 1947) was a German physicist. He is 

considered to be the founder of the quantum theory, and thus one of the most important 

physicists of the twentieth century. Planck was awarded the Nobel Prize in Physics in 

1918. 

 

 
 

http://en.wikipedia.org/wiki/Max_Planck 

 

________________________________________________________________________ 

Wilhelm Carl Werner Otto Fritz Franz Wien (13 January 1864 – 30 August 1928) 

was a German physicist who, in 1893, used theories about heat and electromagnetism to 

deduce Wien's displacement law, which calculates the emission of a blackbody at any 

temperature from the emission at any one reference temperature. He also formulated an 
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expression for the black-body radiation which is correct in the photon-gas limit. His 

arguments were based on the notion of adiabatic invariance, and were instrumental for 

the formulation of quantum mechanics. Wien received the 1911 Nobel Prize for his work 

on heat radiation. 

 
http://en.wikipedia.org/wiki/Wilhelm_Wien 

________________________________________________________________________ 

John William Strutt, 3rd Baron Rayleigh, OM (12 November 1842 – 30 June 1919) 

was an English physicist who, with William Ramsay, discovered the element argon, an 

achievement for which he earned the Nobel Prize for Physics in 1904. He also discovered 

the phenomenon now called Rayleigh scattering, explaining why the sky is blue, and 

predicted the existence of the surface waves now known as Rayleigh waves. In 1910 

Lord Rayleigh discovered that an electrical discharge in nitrogen gas produced "active 

nitrogen", an allotrope considered to be monatomic. The "whirling cloud of brilliant 

yellow light" produced by his apparatus reacted with quicksilver to produce explosive 

mercury nitride. 
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http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh 

________________________________________________________________________ 

 

1 Blackbody problem 

We start with the Maxwell’s equation 
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with ck . Similarly, we have 
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We now consider an electromagnetic wave in the closed cube with side L. 

 

 
 

Fig. Boundary condition for the electric field (red) (tangential component continuous)) 

and the magnetic field (green) (normal component continuous). 

 

From the boundary conditions we have 
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(nx, ny, nz = 1, 2, 3, …) 

 

Note that 

 

Ex = 0   for y = 0 and y = L planes and z = 0 and z = L planes. 

Ey = 0  for z = 0 and z = L planes and x = 0 and x = L planes. 

Ez = 0  for x = 0 and x = L planes and y = 0 and y = L planes. 

 

From the condition 
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)cos()sin()cos( 3212 zkykxkBBy  , 

 

)sin()cos()cos( 3213 zkykxkBBz   

 

where 

 

Bx = 0   for x = 0 and x = L planes  

By = 0  for y = 0 and y = L planes. 

Bz = 0  for z = 0 and z = L planes. 

 

We note that 

 

0)sin()sin()sin()(. 321332211  zkykxkkEkEkEE  

 

This means that the vector (E1, E2, E3) is perpendicular to the wave vector k = (k1, k2, k3). 

For each k, there are two independent directions for (E1, E2, E3); polarization. 

 

 

 
 

2. Density of states for the modes 

Since 0332211  kEkEkE , only one of k1,k2, k3 can be zero at a time. Since if two 

or three are zero, E1 = E2 = E3 = 0. There is no electromagnetic field in the cavity. Each 

set of integers (nx, ny, nz) defines a mode of the radiation field and corresponds to two 

degrees of freedom of the field when two polarization directions are taken into account. 
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where V = L3.  
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We have the following formula; 
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We use the Planck distribution. The total energy is given by 
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(Planck’s law for the radiation energy density). It is clear that 
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is dependent on a variable x given by 
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(scaling relation). The experimentally observed spectral distribution of the black body 

radiation is very well fitted by the formula discovered by Planck. 

 

(1) Region of Wien ( 1
Tk

x
B

ℏ
), 

 



10 

 

xB
W ex

c

Tk
u  3

322

33

)(
ℏ

  

 

(2) Region of Rayleigh-Jeans ( 1
Tk

x
B

ℏ
), 

 

2

322

333

322

33

1)exp(
)( x

c

Tk

x

x

c

Tk
u BB

RJ
ℏℏ 

 


  

 

 

0 2 4 6 8 10
x=

Ñw

kB T
0.0

0.5

1.0

1.5

u HwL

kB3 T3

c3 p2
Ñ
2

Rayleigh-Jean HwaveL

Wien HparticleL

Planck

 
 

Fig. Scaling plot of f(x) vs x for the Planck's law for the energy density of 

electromagnetic radiation at angular frequency  and temperature T. Planck (red). 

Wien (blue, particle-like). Rayleigh-Jean (green, wave-like). 
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Fig. Scaling plot of Planck's law. Wien's law, and Rayleigh-Jean's law. 

 

3. Another approach for the density of states 

We consider a cavity filled with electromagnetic radiation in thermal equilibrium 

with the fixed wall, with a periodic boundary condition. There are two independent 

transverse waves doe each mode (polarization). The wave function of photon is expressed 

by a plane wave, 
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Fig. The energy dispersion for one dimensional photon. The state (denoted by red 

point) is quantized from the periodic boundary condition. There are two photon 

polarizations for each state. 
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Fig. Density of states in the 3D k-space. There is one state per (2/L)3. Each state is 

denoted by red points. 

 

We consider the number of one-photon levels in the energy range from   to d  ; 
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The total number of photons in the black body radiation is 
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The number density of photons is 
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When T = 2.73 K, n = 4.128 x 108/m3 for the entire observable universe (CMB). 

When T = 300 K, n = 5.478 x 1014/m3 (room temperature) 

When T = 1500 K n = 6.847 x 1016/m3. 

When T = 6000 K, n = 4.382 x 1018/cm3 (the temperature of sun’s surface) 

 

4. Deivation of u(, T) 

The total energy: 
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The energy density: 
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where x   ℏ . The Stefan-Boltzmann constant SB  is  
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where 

 

ℏ  = 1.054571596 x 10-27 erg s, kB = 1.380650324 x 10-16 erg/K 

c = 2.99792458 x 1010 cm/s. 

J = 107 erg 

 

5. Wien’s displacement law 

u() has a maximum when 
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28977.0
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T is the temperature in the units of K.  is the wave-length in the unit of nm 

 

T(K)   (nm) 

 
1000 2897.77

1500 1931.85

2000 1448.89

2500 1159.11

3000 965.924

3500 827.935

4000 724.443

4500 643.949

5000 579.554

5500 526.867

6000 482.962

6500 445.811

7000 413.967

7500 386.369

8000 362.221

8500 340.914

9000 321.975

9500 305.029

10000 289.777 
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Fig. Wien's displacement law. The peak wavelength vs temperature T(K). 

 

6. Entropy of photon gas 

The heat capacity of photon gas is 
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is given by the same formula as the entropy. The entropy is related to U as 
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7. Rate of the energy flux density 

 

 
 

Fig. Experimental realization of a black body problem (from Bellac et al.) 
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Fig. Convention for the axis in the calculation for black body radiation (from Bellac et 

al.). 
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Fig. The photon energy passing in the time t  through a solid angle d, making an 

angle  with the normal to dA. The volume of cylinder: dAtc )cos(   during the 

time t .  sin2d . c is the velocity of light. 

 

It is assumed that the thermal equilibrium of the electromagnetic waves is not 

disturbed even when a small hole is bored through the wall of the box. The area of the 

hole is dA. The energy which passes in unit time through a solid angle d, making an 

angle  with the normal to dA is 
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where c is the velocity of light. The right hand side is divided by 4, because the energy 

density u comprises all waves propagating along different directions. The emitted energy 

per unit time, per unit area is 
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Fig. Radiation intensity is used to describe the variation of radiation energy with 

direction. 

 

In other words, the geometrical factor is equal to 1/4. Then we have a measure for the 

intensity of radiation (the rate of energy flux density); 
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The energy flux density ),( TS   is defined as the rate of energy emission per unit area. 

 

((Note)) The unit of the poynting vector <S> is [W/m2]. S  is the energy flux 

(energy per unit area per unit time). 

 

 

(1) Rayleigh-Jeans law (in the long-wavelength limit) 
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(2) Wien's law (in short-wavelength limit) 
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We make a plot of ),( TS  as a function of the wavelength, where ),( TS  is in the 

units of W/m3 and the wavelength is in the units of nm. 
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Fig. cu()/4 (W/m3) vs  (nm). T = 2 x 103 K. Red [Planck]. Green [Wien]. Blue 

[Rayleigh-Jean]. Wien's displacement law: The peak appears at  = 1448.89 nm 



25 

 

for T = 2 x 103 K. This figure shows the misfit of Wien's law at long wavelength 

and the failure of the Rayleigh-Jean's law at short wavelangth. 
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Fig. (a) and (b) cu()/4 (W/m3) vs  (nm) for the Plank's law. T = 1000 K (red), 1500 

K, 2000 K, 2500 K, 3000 K (blue), 3500 K, 4000 K (purple), 4500 K, and 5000 K. 

The peak shifts to the higher wavelength side as T decreases according to the 

Wien's displacement law. 

 



26 

 

 
 

Fig. Power spectrum of sun. cu()/4 (W/m3) vs  (nm). T = 5778 K. The peak 

wavelength is 501.52 nm according to the Wien's displacement law. 
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Fig. Power spectrum of cosmic blackbody radiation at T = 2.726 K. The peak 

wavelength is 1.063 mm (Wien's displacement law. 

________________________________________________________________________ 

8. Stefan-Boltzmann radiation law for a black body (1879). 

 

Joseph Stefan (24 March 1835 – 7 January 1893) was a physicist, mathematician and 

poet of Slovene mother tongue and Austrian citizenship. 
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http://en.wikipedia.org/wiki/Joseph_Stefan 

 

_______________________________________________________________________ 

Ludwig Eduard Boltzmann (February 20, 1844 – September 5, 1906) was an Austrian 

physicist famous for his founding contributions in the fields of statistical mechanics and 

statistical thermodynamics. He was one of the most important advocates for atomic 

theory at a time when that scientific model was still highly controversial. 

 
 

http://en.wikipedia.org/wiki/Ludwig_Boltzmann 

____________________________________________________________________ 

The total energy per unit volume is given by 
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A spherical enclosure is in equilibrium at the temperature T with a radiation field that it 

contains. The power emitted through a hole of unit area in the wall of enclosure is 
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where SB  is the Stefan-Boltzmann constant 
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  erg/(s-cm2-K4) = 5.670400 x 10-8 W m-2 K-4 

 

and the geometrical factor is equal to 1/4. The application of the Stefan-Boltzmann law is 

discussed in lecture notes of Phys.131 (Chapter 18) (see URL at 

 

http://bingweb.binghamton.edu/~suzuki/GeneralPhysLN.html 

 

 

9. Duality of wave and particle 

 

Region of Rayleigh-Jeans: wave-like nature 

Region of Wien:   particle-like nature 
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The mean-square of the fluctuation in energy is obtained as 
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(See the Appendix for the detail). Note that 
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(i) Rayleigh-Jean (wave-like) 
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Then we have 
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(ii) Wien (particle-like) 
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(iii) Planck 

 

2

2

3
2 )(

1
)()]([ 


 E

c

V
EE


 ℏ  

 

10. Einstein A and B coefficient 
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Planck’s law for the radiative energy density (Black body) 

 

Suppose that a gas of N identical atoms is placed in the interior of the cavity: 

 

  ℏ  E2  E1 . 

 

Two atomic levels are not degenerate. 
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 N1, N2: level population 

 

 
 

 

W() WT ( ) WE ( )  

 

W(): cycle-average energy density of radiation at   

WT( ): thermal part 

WE ( ): contribution from some external source of electromagnetic radiation 

 

 
 

 

dN1

dt
 A21N2  N1B12W( )  N2 B21W()

dN2

dt
 A21N2  N1B12W()  N2 B21W()










 

 

Case of thermal equilibrium 

 
dN1

dt


dN2

dt
 0  

 

or 

 

N2 A21  N1B12W()  N2B21W( )  0  
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For thermal equilibrium with no external radiation introduced into the cavity 

 

W() WT ( )  

 

WT( ) 
A21

N1

N2

B12  B21











 

 

The level populations N1 and N2 are related in thermal equilibrium by Boltzman’s law 

 

  

N1

N2


e
E1

e
 E2

 exp(ℏ) , ( = 1/kBT) 

 

Then 

 

  

WT () 
A21

B12e
ℏ  B21

 

 

which is compared with the Planck’s law 

 

  

WT () 

ℏ 3

 2
c

3











e
ℏ 1

 

 

 

  

B12  B21

A21

B12


ℏ3

 2
c

3








 

 

WT () 
A21

B12

n , where 
  

n 
1

e
ℏ 1

 

 

or 

 

  

A21

B21WT ()
 e

ℏ 1 

 

((Example))   ℏ  kBT  

 

For T = 300 K, T = 6  1012 Hz = 6 THz 

For ℏ « kBT, A21 «B21WT ()   ( « T) 

For ℏ » kBT, A21 »B21WT ()   ( » T) 
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For optical experiments that use electromagnetic radiation in the near-infrared, we have 

visible, ultraviolet region of the spectrum ( » 5 THz). 

 

We have 

 

(i) A21 »B21WT ()  

 

A21: spontaneous emission rate 

B21: rate of thermally stimulated emission 

 

(ii) W() WT ( ) WE ( ) WE ()  

 

Therefore the radioactive process of interest involve the absorption and stimulated 

emission associated with the external source. 

 

 
 

((Note)) 

Calculation of 1
1

)(

/

12

21  Tk

T

Be
nWB

A 


ℏ

 at T = 300 K as a typical example. This factor 

is larger than 1 when  = 4.333 THz. 

 

11. Example: Blundell-Blundell Problem 23.7 
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((Solution)) 

 
3 3 3 32

2 3 3 2 3 3

0

2 (3)
exp( ) 1

B Bk T k TN x dx

V c x c


 



 


ℏ ℏ
 

 

where 

 
2

0

(3) (3) 2! (3) 2.40411
1x

x dx

e
 



   
  

 

20206.1)3(   
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The total energy is given by 

 

332

44

332

44

0

3

332

44

)4(!3)4()4(
1)exp( c

Tk

c

Tk

x

dxx

c

Tk

V

U BBB

ℏℏℏ 






 



 

 

where 

 

0823.1
90

)4(
4




 . 

 

Then we have the ratio 
U

N
as 

 

TkTk

c

Tk

c

Tk

N

U
BB

B

B

 70111.2
)3(

)4(3

)3(2

)4(6

332

33

332

44











ℏ

ℏ  

 

The entropy is defined by 
T

U
S

3

4
  

 

BB kTk
TN

U

TN

S
60148.3 70111.2

3

4

3

4
  

 

The ideal gas is in a limit where there are far more possible states than particles, 

permitting quite a low average energy (1.5 kBT per particle) but quite high entropy. 
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_______________________________________________________________________ 

APPENDIX 

A-1 Planck's law 

 

In thermal equilibrium at temperature T, the probability Pn that the mode oscillator is 

thermally excited to the n-th excited state is given by the usual Boltzmann factor 

 

 




n B

n

B

n

n

Tk

E

Tk

E

P

)exp(

)exp(

. 

 

The zero-point energy cancels when the quantized energy expression is substituted and, 

with the shorthand notation 

 

)exp(
Tk

U
B

ℏ
  

 

the thermal probability becomes 

 

U
U

U
P

n

n
n 








1

1

0

 

 

where 0<U<1. We define that 

 







0n

n

mm Pnn . 

 

Then we have 

 

1)exp(

1

10 



 





Tk

U

U
Pnnn

B

n

n

m

ℏ
 

 

2

2
2

)1( U

UU
n




  

 

3

2
3

)1(

)41(

U

UUU
n
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2

222

)1( U

U

nnn






 

 

The fluctuation in the number is characterized by the root-mean square deviation n of 

the distribution. 

 

2

22

22

)1(

)()(

U

U

nn

nnn








 

 

Since 

 

 22

2
2

11)1( U

U

U

U

U

U
nn








  

 

we get the relation 

 

nnn  22)( . 

 

((Mathematica)) 

 



38 

 

Fluctuation in photon number (Planck distribution)

P@n_D = H1 − UL U
n
;

K@m_D := ‚
n=0

∞

Inm P@nDM êê Simplify@�, 0 < U < 1D &;

K@1D êê Simplify

−
U

−1 + U

K@2D êê Simplify

U H1 + UL
H−1 + UL2

K@3D êê Simplify

−
U I1 + 4 U + U2M

H−1 + UL3

K@2D − K@1D2 êê Simplify

U

H−1 + UL2

K@1D + K@1D2 êê Simplify

U

H−1 + UL2  
 

A-2 Energy fluctuation 

 

E
T

Tk

EE

EEE

B 
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nPnE
n

n  ℏℏ   
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