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The blackbody radiation may be regarded as a gas consisting of photons. The photon gas is an 

ideal gas. Because of the angular momentum of the photons is integral (spin 1), this gas obeys 

Bose statistics. Here the physics of cosmic microwave background (CMB).  

 

______________________________________________________________________________ 

The cosmic microwave background (CMB) is the thermal radiation left over from the time of 

recombination in Big Bang cosmology. In older literature, the CMB is also variously known as 

cosmic microwave background radiation (CMBR) or "relic radiation". The CMB is a cosmic 

background radiation that is fundamental to observational cosmology because it is the oldest 

light in the universe, dating to the epoch of recombination. With a traditional optical telescope, 

the space between stars and galaxies (the background) is completely dark. However, a 

sufficiently sensitive radio telescope shows a faint background glow, almost isotropic, that is not 

associated with any star, galaxy, or other object. This glow is strongest in the microwave region 

of the radio spectrum. The accidental discovery of the CMB in 1964 by American radio 

astronomers Arno Penzias and Robert Wilson[1][2] was the culmination of work initiated in the 

1940s, and earned the discoverers the 1978 Nobel Prize. 

https://en.wikipedia.org/wiki/Cosmic_microwave_background 

______________________________________________________________________________ 

 

1. Energy density of photon gas 

The energy dispersion of photon is given by 
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where k is the wavenumber, c is the velocity of light, p is the momentum, and  is the 

wavelength. We consider the mode ( k ) (simple harmonic oscillator) with the angular frequency 

k
 . Using the canonical ensemble, the Canonical partition function is obtained as 
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The average energy is 
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where 
k

n  is the Planck distribution function 
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which corresponds to the Bose-Einstein distribution function with zero chemical potential. When 

the system consists of many modes with k  (any k), the total energy is given by 
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where we use the energy dispersion relation for photon, 

 


k

 










d

c

V
d

c

V
dkk

V
32

2
2

33

2

3

4

)2(

2
4

)2(

2
  

 

1

1


  ℏe

n . 

 

Then the energy density is given by 
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where 
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. (Planck’s law for the radiation energy density). It is clear that 
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is dependent on a variable x given by 
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(scaling relation). The experimentally observed spectral distribution of the black body radiation 

is very well fitted by the formula discovered by Planck. 
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(2) Region of Rayleigh-Jeans ( 1
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x
B

ℏ
), 
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Fig. Scaling plot of f(x) vs x for the Planck's law for the energy density of electromagnetic 

radiation at angular frequency  and temperature T. Planck (red). Wien (blue, particle-

like). Rayleigh-Jean (green, wave-like). 
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Fig. Scaling plot of Planck's law. Wien's law, and Rayleigh-Jean's law. 

 

2. Deivation of u(, T) 
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or 
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Then we have 
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where 

 

ℏ  = 1.054571596 x 10-27 erg s, kB = 1.380650324 x 10-16 erg/K 

c = 2.99792458 x 1010 cm/s. 

J = 107 erg 

 

3. Wien’s displacement law 

u() has a maximum at 
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Note that 
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((Mathematica)) 
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_________________________________________________________________________ 

The above equation can be rewritten as 
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T is the temperature in the units of K.  is the wave-length in the unit of nm 
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Fig. Wien's displacement law. The peak wavelength vs temperature T(K). 

 

4. Rate of the energy flux density 

 

 
 

Fig. Experimental realization of a black body problem (from Bellac et al.) 
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Fig. Convention for the axis in the calculation for black body radiation (from Bellac et al.). 

 

It is assumed that the thermal equilibrium of the electromagnetic waves is not disturbed even 

when a small hole is bored through the wall of the box. The area of the hole is dS. The energy 

which passes in unit time through a solid angle d, making an angle  with the normal to dS is 
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where c is the velocity of light. The right hand side is divided by 4, because the energy density 

u comprises all waves propagating along different directions. The emitted energy unit time, per 

unit area is 
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Fig. Radiation intensity is used to describe the variation of radiation energy with direction. 

 

In other words, the geometrical factor is equal to 1/4. Then we have a measure for the intensity 

of radiation (the rate of energy flux density); 

 

x

y

z

q

dq

f df

r

dr
r cosq

r sinq

r sinq df

rdq

èr
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where 

 

S (λ ,T)dλ = power radiated per unit area in ( , + d) 
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The energy flux density ),( TS   is defined as the rate of energy emission per unit area. 

 

((Note)) The unit of the Poynting vector <S> is [W/m2]. S  is the energy flux (energy per 

unit area per unit time). 

 

(1) Rayleigh-Jeans law (in the long-wavelength limit) 
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(2) Wien's law (in short-wavelength limit) 
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We make a plot of ),( TS  as a function of the wavelength, where ),( TS  is in the units of 

W/m3 and the wavelength is in the units of nm. 

 



 

 

Fig. cu()/4 (W/m3) vs  (nm). T = 2 x 103 K. Red [Planck]. Green [Wien]. Blue [Rayleigh-

Jean]. Wien's displacement law: The peak appears at  = 1448.89 nm for T = 2 x 103 K. 

This figure shows the misfit of Wien's law at long wavelength and the failure of the 

Rayleigh-Jean's law at short wavelength. 
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Fig. (a) and (b) cu()/4 (W/m3) vs  (nm) for the Plank's law. T = 1000 K (red), 1500 K, 2000 

K, 2500 K, 3000 K (blue), 3500 K, 4000 K (purple), 4500 K, and 5000 K. The peak shifts 

to the higher wavelength side as T decreases according to the Wien's displacement law. 

 

 
 

Fig. Power spectrum of sun. cu()/4 (W/m3) vs  (nm). T = 5778 K. The peak wavelength is 

501.52 nm according to the Wien's displacement law. 
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Fig. Power spectrum of cosmic blackbody radiation at T = 2.726 K. The peak wavelength is 

1.063 mm (Wien's displacement law). 

 

 
 

https://en.wikipedia.org/wiki/Cosmic_microwave_background 
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Fig. The spectrum of radiation that uniformly fills space, with greatest intensity at millimeter 

– microwave – wavelengths. [P.J. Peebles, L.A. Page, Jr., and R.B. Partridge, Finding the 

Big Bang (Cambridge, 2009) 

 

________________________________________________________________________ 

5. Stefan-Boltzmann radiation law for a black body (1879). 

 

Joseph Stefan (24 March 1835 – 7 January 1893) was a physicist, mathematician and poet of 

Slovene mother tongue and Austrian citizenship. 

 



 
 

http://en.wikipedia.org/wiki/Joseph_Stefan 

The total energy per unit volume is given by 
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((Mathematica)) 

 

 

 

A spherical enclosure is in equilibrium at the temperature T with a radiation field that it contains. 

The power emitted through a hole of unit area in the wall of enclosure is 

 

44

23

42

604

1
TT

c

k
cP SB

B 


 
ℏ

 

 

where  is the Stefan-Boltzmann constant 
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and the geometrical factor is equal to 1/4.  

 

 

7. Thermodynamics 
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Here we discuss the thermodynamics of photon gas. 

 

(a) The photon number density 
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When T = 2.73 K, we have 

 

767.412n /cm3. 

 

(b) Energy density: 

 

33

42

0

3

332

4

15

)(

1)exp(

)(
)(

c

Tk

x

x

c

Tk
du

V

E BB

ℏℏ




 


 


 

 

or 

 

44
T

cV

E
SB , 

 

where 

 

23

42

60 c

kB
SB

ℏ


   

 

(c) Pressure P; 
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The pressure is given by 
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(d) Helmholtz free energy F; 
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The integration by part leads to 
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(e) Entropy S; 
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From the relation; PdVTdSdF   we can get the entropy S as 
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(f) The heat capacity: 
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(g) The pressure P 

 

The pressure P can be obtained as 
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8. Chemical potential (Landau-Lifshitz) 

 

The mechanism by which equilibrium can be established, consists in the absorption and 

emission of photons by matter. This results in an important specific property of the photon gas: 

the number of photons N in it is variable, and not a given constant as in an ordinary gas. Thus N 

itself must be determined from the conditions of thermal equilibrium. From the condition that the 

free energy of the gas should be a minimum (for given T and V), we obtain as one of the 

necessary conditions 0)/ ,  VTNF . Since 
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this gives 0 , i.e., the chemical potential of the photon gas is zero. 

 

L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press 1976). 

 

9. Example (Huamg 17.1) 

Huang 17.6 

The background cosmic radiation has a Planck distribution temperature with temperature 2.73 K, 

as shown in Fig.17.1. 

(a) What is the phonon density in the universe? 

(b) What is the entropy per photon? 

(c) Suppose the universe expands adiabatically. What would the temperature be when the 

volume of the universe doubles? 

 



 

 

((Solution)) 

Here we discuss the thermodynamics of photon gas. 

 

(a) The photon number density 
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767.412n /cm3. 

 

(b) Energy density: 
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(c) Pressure P; 
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The pressure is given by 
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(d) Helmholtz free energy F; 
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The integration by part leads to 
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where 
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(e) Entropy S; 
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From the relation; PdVTdSdF   we can get the entropy S as 
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or 
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(f) The heat capacity: 
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(g) The pressure P 

 

The pressure P can be obtained as 
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10. Example (Kittel 4-1) 

4-1. Number of thermal photons. Show that the number of photons in equilibrium at 

temperature T in a cavity of volume V is 
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The entropy S is given by 
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whence  
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It is believed that the total number of photons in the universe is 810  larger than the total number 

of nucleons (protons, neutrons). Because both entropies are of the order of the respective number 

of particles, the photons provide the dominant contribution to the entropy of the universe, 

although the particles dominate the total energy. We believe that the entropy of the photons is 

essentially constant, so that the entropy of the universe is approximately constant with time. 
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