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In the grand canonical ensemble, the probability of the state |E N > (with the energy E and
the number of particles N) is given by the Gibbs factor

P=Ziexp[ﬂ(mv—E>]

G

where u is the chemical potential and S = ﬁ . The partition function Z is expressed by
B

Z, = exp(~fiD,)

using the grand potential @, =-PV .

Hew we take a brief look at the essence of the grand canonical ensemble.

1. Derivation of grand canonical ensemble
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Fig.  One specific state denoted by |E, N > (the energy E and the particle number N) surrounded

by the reservoir. There are energy exchange and particle exchange between the quantum
state and the reservoir.

Suppose that there is a quantum state (one state) denoted by |E ,N > surrounded by the reservoir.

The way of possible states is given by
W=1xE —E,N, —N)
From the Boltzmann’s principle, the entropy is expressed by

S =k, InW =k, InQ(E, —E,N, — N)



or

S
= —_—
W = exp( A )
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where k, is the Boltzmann constant. We use the Taylor expansion,
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The probability is denoted by

Sr — kB/BE + kB/B/uN
ky

P(E,N) = exp( )
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We define the fugacity (or the absolute activity)

We define the grand canonical ensemble;
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We use the partition function for the canonical ensemble, which is defined by
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The internal energy is
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The entropy is
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The entropy S can be rewritten as
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The Helmbholtz free energy
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2. Grand potential: ®, =—k,T'InZ;

Here we define the grand potential @ ; as
O, =-k,TInZ, (Grand potential)

in the grand canonical ensemble, which corresponds to the Helmholtz free energy in the canonical
ensemble,

F.=~k,TInZ, (Canonical ensemble)
Using this, we get the Helmholtz free energy as

F=uN+®,=uN-k,TInZ,
where we use N = <N > for simplicity.

®,.=F—-uN
Here we show that the Gibbs free energy is expressed by

G=uN

or
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The Gibbs free energy is
G=F+PV
Then we have
F-G=F—-uN=-PV =0,
or
O, =—k,TInZ, =-PV
when
G=uN.
3. Thermodynamic properties using ® . =—k,7'InZ; = -PV
®,=F—-uN=-k,TInZ,=—-PV
d®, =d(F - uN)
= —SdT — PdV + pdN — pdN — Nd p
= —SdT — PdV — Nd u

So we get the relations
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We also note that
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4. Average number:
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Note that
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Then we have
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Note that
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6. Number density
We define the density 7 as
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So the variance of number is given by
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APPENDIX-I Scaling relation (I): Thermodynamics

Scaling: another method of deriving the expression G = G(T,P,N) = uN
(Blundell-Blundell, Thermal Physics)

The entropy S is a function of U, V, and N. All four parameters are extensive parameters. We
assume the scaling relation such that

S(AU,AV,AN)=AS(U,V,N)
taking into account of the extensive parameters
S—>AS, U—- AU, V—> AV, N —> AN

After differentiating this with respect to 4 and subsequently setting 4 =1, we have
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Thus we have the relation



U-ST+PV =uN, F=U-ST
leading to
G=F+PV=uN
((Note))
dU =TdS — PdV + udN
F=U-ST

dF =dU — SdT — TdS
= TdS — PdV + pdN — SdT — TdS
= —SdT — PdV + pidN

and
G=F+PV
dG =dF + PdV +VdP
=—-8dT — PdV + pdN + PdV +VdP
=-8dT +VdP + udN
APPENDIX-II Scaling relation (II): Thermodynamics

Here we show that
G=G(T,P,N)=uN
Note that the Gibbs free energy is a function of 7, P, and N. The variables (T and P) are intensive
parameter, while N is the extensive parameter. Since G is the extensive quantity, we can assume

the scaling relation,

G(T,P,AN) = AG(T,P,N)

where A is arbitrary. We take the derivative of the above equation with respect to A and after that
we choose A =1.
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Then we have
G=G(T,P,N)=uN

since

(aG(T,P,N)j _
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