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In the grand canonical ensemble, the probability of the state NE,  (with the energy E and 

the number of particles N) is given by the Gibbs factor 
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where  is the chemical potential and 
TkB
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 . The partition function GZ  is expressed by  
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using the grand potential PVG  . 

Hew we take a brief look at the essence of the grand canonical ensemble. 

 

1. Derivation of grand canonical ensemble 

 



 

 

Fig. One specific state denoted by NE,  (the energy E and the particle number N) surrounded 

by the reservoir. There are energy exchange and particle exchange between the quantum 

state and the reservoir. 

 

Suppose that there is a quantum state (one state) denoted by NE, surrounded by the reservoir.  

The way of possible states is given by 
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From the Boltzmann’s principle, the entropy is expressed by 
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or 
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where Bk  is the Boltzmann constant. We use the Taylor expansion, 
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The probability is denoted by 
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We define the fugacity (or the absolute activity) 
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We define the grand canonical ensemble; 
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We use the partition function for the canonical ensemble, which is defined by 
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The internal energy is 
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since 

 

( )

0 ( )

( ) ( )

0 ( ) 0 ( )

1
ln

1
 

1 1
  [ ( )]

i

i i

G G

G

E NN

N i NG

E N E NN N

i

N i N N i NG G

G

Z Z
Z

z e
Z

Nz e z E N e
Z Z

N U



 

 












 

 

 


 







 



 

 

   

 

 

( )

0 ( )

( )

0 ( )

1
ln

1
 

1
 

i

i

G G

G

E NN

N i NG

E NN

N i NG

G

Z Z
Z

z e
Z

Nz e
Z

N





 















 


 










 

 

 

 

The entropy is  
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The entropy S can be rewritten as 
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The average number: 
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The Helmholtz free energy 
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2. Grand potential: GBG ZTk ln  

Here we define the grand potential G as 

 

GBG ZTk ln  (Grand potential) 

 

in the grand canonical ensemble, which corresponds to the Helmholtz free energy in the canonical 

ensemble, 

 

CBC ZTkF ln  (Canonical ensemble) 

 

Using this, we get the Helmholtz free energy as 
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where we use N N  for simplicity. 
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Here we show that the Gibbs free energy is expressed by 
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The Gibbs free energy is 

 

PVFG   

 

Then we have 
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or 
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3. Thermodynamic properties using PVZTk GBG  ln  
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So we get the relations 
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We also note that 
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which leads to the relation 
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leading to the result which is derived above 
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4. Average number: 
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Note that 
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Thus we have 
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5. Variance in the number 
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Then we have 
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Note that 
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6. Number density 

We define the density n as 
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So the variance of number is given by 

 

 21
N

Tk

n
V

B






, or  21
N

TVk

n

B






 

 

  V
n

TkN B 


 2
 

 



V
n

TkN B 


  

 

1
B B

G

n n
k T V k T

N

N nV n V

 
 
 

   

 

REFERENCES 

E. Fermi, Notes on Thermodynamics and Statistics (The University of Chicago, 1966). 

H.S. Robertson, Statistical Thermodynamics (PRP Prentice Hall, 1993). 

S.J. Blundell and K.M. Blundell, Concepts in Thermal Physics (Oxford, 2006). 

 

______________________________________________________________________________ 

APPENDIX-I  Scaling relation (I): Thermodynamics 

 

Scaling: another method of deriving the expression NNPTGG  ),,(  

(Blundell-Blundell, Thermal Physics) 

 

The entropy S is a function of U, V, and N. All four parameters are extensive parameters. We 

assume the scaling relation such that 
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taking into account of the extensive parameters 
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After differentiating this with respect to   and subsequently setting 1 , we have 
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since 
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Thus we have the relation 
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leading to 
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____________________________________________________________________________ 

APPENDIX-II Scaling relation (II): Thermodynamics 

Here we show that 
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Note that the Gibbs free energy is a function of T, P, and N. The variables (T and P) are intensive 

parameter, while N is the extensive parameter. Since G is the extensive quantity, we can assume 

the scaling relation, 
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where   is arbitrary. We take the derivative of the above equation with respect to  and after that 

we choose =1. 
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Then we have 

 

NNPTGG  ),,(  

 

since 

 













PTN

NPTG

,

),,(
 

 


