# Grand canonical ensemble in Hemoglobin (Hb) <br> Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton 

(Due date: October 13, 2017)
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). p. 146 Chapter 5 Problem 6-8.

A red-blooded example of a system that may be occupied by zero molecules or by one molecule is the heme group, which may be vacant or may be occupied by one $\mathrm{O}_{2}$ molecule - and never any more than one molecule. A single heme group occurs in the protein myoglobin, which is responsible for the red color of meat. If $\varepsilon\left(\mathrm{O}_{2}\right)$ is the energy of an adsorbed molecule of $\mathrm{O}_{2}$ relative to $\mathrm{O}_{2}$ at rest at infinite distance.

## Kittel and Kroemer

5-8. Carbon monoxide poisoning. In carbon monoxide poisoning the CO replaces the $\mathrm{O}_{2}$ adsorbed on hemoglobin $(\mathrm{Hb})$ molecules in the blood. To show the effect, consider a model for which each adsorption site on a heme may be vacant or may be occupied either with energy $\varepsilon\left(\mathrm{O}_{2}\right)$ by one molecule $\mathrm{O}_{2}$ or with energy $\varepsilon(\mathrm{CO})$ by one molecule CO . Let $N$ fixed heme sites be in equilibrium with $\mathrm{O}_{2}$ and CO in the gas phases at concentrations such that the activities are $z\left(\mathrm{O}_{2}\right)=$ $1 \times 10^{-5}$ and $z(\mathrm{CO})=1 \times 10^{-7}$, all at body temperature $37^{\circ}$. Neglect any spin multiplicity factors.
(a) First consider the system in the absence of CO. Evaluate $\varepsilon\left(\mathrm{O}_{2}\right)$ such that 90 percent of the Hb sites are occupied by $\mathrm{O}_{2}$. Express the answer in eV per $\mathrm{O}_{2}$.
(b) Now admit the CO under the specified conditions. Find $\varepsilon(\mathrm{CO})$ such that 10 percent of the Hb sites are occupied by $\mathrm{O}_{2}$.


Fig. 1 Heme group. Heme site with vacant atom and the state occupied by $\mathrm{O}_{2}$


Fig. 2 Heme group. Heme site with vacant atom, the state occupied by $\mathrm{O}_{2}$, and the state occupied by CO. The independent-site model.

## ((Solution))



First we consider a heme site with vacant atom and the state occupied by $\mathrm{O}_{2}$. The one-site partition function is

$$
\begin{aligned}
& Z_{G}\left(\mathrm{O}_{2}\right)=1+z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}, \\
& P_{1}\left(\mathrm{O}_{2}\right)=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{Z_{G}\left(\mathrm{O}_{2}\right)}=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{1+z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}} .
\end{aligned}
$$

Next we consider a heme site with three states, a state with vacant atom, a state occupied by $\mathrm{O}_{2}$, and a state occupied by CO. The grand partition function for the single- site system is given by

$$
Z_{G}(\mathrm{O}, \mathrm{CO})=1+z(\mathrm{O}) e^{-\beta \varepsilon\left(O_{2}\right)}+z(\mathrm{CO}) e^{-\beta \varepsilon(\mathrm{CO})}
$$

The probability:

$$
P_{2}(\mathrm{O})=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{Z_{G}(\mathrm{O}, \mathrm{CO})}=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{1+z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon(O)}+z(\mathrm{CO}) e^{-\beta \varepsilon(\mathrm{CO})}},
$$

$$
P_{2}(\mathrm{CO})=\frac{z(\mathrm{CO}) e^{-\beta \varepsilon(\mathrm{CO})}}{1+z(\mathrm{O}) e^{-\beta \varepsilon\left(O_{2}\right)}+z(\mathrm{CO}) e^{-\beta \varepsilon(\mathrm{CO})}} .
$$

((Example))

$$
\begin{aligned}
& P_{1}\left(\mathrm{O}_{2}\right)=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{1+z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}=0.9 \\
& P_{2}\left(\mathrm{O}_{2}\right)=\frac{z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}}{1+z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon(O)}+z(\mathrm{CO}) e^{-\beta \varepsilon(\mathrm{CO})}}=0.1
\end{aligned}
$$

where the activity (fugacity)

$$
z\left(\mathrm{O}_{2}\right)=1 \times 10^{-5}, \quad z(\mathrm{CO})=1 \times 10^{-7}
$$

In other words, the probability of the site being occupied by an oxygen molecule drops from $90 \%$ to $10 \%$.

We evaluate the energy of $\varepsilon\left(\mathrm{O}_{2}\right)$ and $\varepsilon(\mathrm{CO})$ at $T=300 \mathrm{~K}$.

Since

$$
\begin{array}{lr}
z\left(\mathrm{O}_{2}\right) e^{-\beta \varepsilon\left(O_{2}\right)}=9 & z(\mathrm{CO}) e^{-\beta \varepsilon(C O)}=80, \\
e^{-\beta \varepsilon\left(\mathrm{O}_{2}\right)}=9 \times 10^{5}, & e^{-\beta \varepsilon(\mathrm{CO})}=8 \times 10^{8}
\end{array}
$$

we get

$$
\varepsilon\left(\mathrm{O}_{2}\right)=-0.35 \mathrm{eV}, \quad \varepsilon(\mathrm{CO})=-0.53 \mathrm{eV}
$$

## Kittel Thermal Physics

## Chapter 6 Problem 3

Distribution function of double occupancy statistics. Let us imagine a new mechanics in which the allowed occupancies of an orbital are 0,1 , and 2 . The values of the energy associated with these occupancies are assumed to be $0, \varepsilon$, and $2 \varepsilon$, respectively.
(a) Derive an expression for the ensemble average occupancy $\langle N\rangle$, when the system composed of this orbital is in thermal and diffusive contact with a reservoir at temperatures $T$ and chemical potential $\mu$.
(b) Return now to the usual quantum mechanics, and derive an expression for the ensemble average occupancy of an energy level which is doubly degenerate; that is, tow orbitals have the identical energy $\varepsilon$. If both orbitals are occupied the total energy $2 \varepsilon$

## ((Solution))

(a)

(i) No occupancy, 0 energy
$(N=0, E=0)$
(ii) Single occupancy, $\varepsilon$ energy
( $N=1, E=\varepsilon$ )
(iii) Double occupancy, $2 \varepsilon$ energy
( $N=2, E=2 \varepsilon$ )

Gibbs sum:

$$
\begin{aligned}
& Z_{G}=1+z e^{-\beta \varepsilon}+z^{2} e^{-2 \beta \varepsilon} \\
& \langle N\rangle=z \frac{\partial}{\partial z} \ln Z_{G}=\frac{z e^{-\beta \varepsilon}+2 z^{2} e^{-2 \beta \varepsilon}}{1+z e^{-\beta \varepsilon}+z^{2} e^{-2 \beta \varepsilon}}
\end{aligned}
$$

(b)


Note that this is a different case than part (a). Now there are a total of 4 states
(i) No occupancy, 0 energy
(ii) Single occupancy, $\varepsilon$ energy
(iii) Single occupancy, $\varepsilon$ energy
(iv) Double occupancy, $2 \varepsilon$ energy

Gibbs sum:

$$
\begin{aligned}
Z_{G} & =1+z e^{-\beta \varepsilon}+z e^{-\beta \varepsilon}+z^{2} e^{-2 \beta \varepsilon}=1+2 z e^{-\beta \varepsilon}+z^{2} e^{-2 \beta \varepsilon} \\
\langle N\rangle & =z \frac{\partial}{\partial z} \ln Z_{G} \\
& =\frac{2 z e^{-\beta \varepsilon}+2 z^{2} e^{-2 \beta \varepsilon}}{1+2 z e^{-\beta \varepsilon}+z^{2} e^{-2 \beta \varepsilon}} \\
& =\frac{2 z e^{-\beta \varepsilon}\left(1+z e^{-\beta \varepsilon}\right)}{\left(1+z e^{-\beta \varepsilon}\right)^{2}} \\
& =\frac{2 z e^{-\beta \varepsilon}}{1+z e^{-\beta \varepsilon}}
\end{aligned}
$$

## REFERENCES

S.J. Blundell and K.M. Blundell, Concepts in Thermal Physics (Oxford, 2006).
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company,1980).

