Gibbs sum: Donor level and acceptor level in semiconductor Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2018)

1. Occupancy of donor

A donor level can be occupied by an electron with either spin up or spin down. Once the level is occupied by one electron, the donor cannot bind a second electron with opposite spin. We suppose that one, but only one, electron can be bound to an impurity atom, either orientation \uparrow or \downarrow of the electron spin is accessible. The possible microscopic states for a donor level are the empty state, the state occupied by an electron of spin up and that of spin down. The Gibbs sum is given by

$$Z_G = 1 + 2ze^{-\beta E_d}$$

The probability that the system is ionized (N = 0) is

$$P(\text{ionized}) = f(D^+) = \frac{1}{Z_G} = \frac{1}{1 + 2ze^{-\beta E_d}} = \frac{1}{1 + 2e^{\beta(\mu - E_d)}}$$

The probability that the system is neutralized is

$$P(\text{neutral}) = f(D) = 1 - \frac{1}{1 + 2ze^{-\beta E_d}} = \frac{2ze^{-\beta E_d}}{1 + 2ze^{-\beta E_d}} = \frac{1}{1 + \frac{1}{2}e^{\beta(E_d - \mu)}}$$

Note that two electrons with opposite spins are not allowed in the same site because of the repulsive Coulomb interaction. The factor 2 is the spin degeneracy.

Fig. *N*-type semiconductor with donor level.

2. Occupancy of acceptor

In the ionized condition A^- of the acceptor, each of the chemical bonds between the acceptor atom and the surrounding semiconductor Si atoms, contains a pair of electrons with antiparallel spins. There is only one such state.

Fig. The spin direction is fixed.

In the above figure, the electron in the spin down state.

1. $1 z e^{-\beta \varepsilon_a}$: one electron with spin down

In the neutral condition A of the acceptor, one electron is missing from the surrounding bonds. The missing electron may have either spin up or spin down.

2. one \uparrow electron missing (N = 0, zero energy) 3. one \downarrow electron missing (N = 0, zero energy)

Thus we have the partition function

$$Z_G = 2 + ze^{-\beta\varepsilon_a} .$$

$$f(A^-) = \frac{ze^{-\beta\varepsilon_a}}{2 + ze^{-\beta\varepsilon_a}} = \frac{1}{\frac{2}{z}e^{\beta\varepsilon_a} + 1} = \frac{1}{1 + 2e^{\beta(\varepsilon_a - \mu)}}$$

(the acceptor orbital occupied)

$$f(A) = \frac{2}{2 + ze^{-\beta\varepsilon_a}} = \frac{1}{1 + \frac{1}{2}e^{\beta(\mu - \varepsilon_a)}}$$

(the acceptor orbital unoccupied)

3. Summary

The electron concentrations in the donner level and the acceptor level ar

$$n_D = N_d f(D) = \frac{N_d}{1 + \frac{1}{2} e^{\beta(E_d - \mu)}}$$

$$n_A = N_A f(A^-) = \frac{N_A}{1 + 2e^{\beta(\varepsilon_a - \mu)}}$$