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1. Approach from the grand canonical ensemble: ideal gas
The partition function of the grand canonical ensemble for the ideal gas is
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The chemical potential:
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The variance of number:
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The grand potential
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The equation of state:
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Using this expression, the chemical potential can be rewritten as
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Therefore we have

(Sacker-Tetrode equation)

The internal energy:
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((Note-1)) H.S. Robert, Statistical Thermodynamics (P T R Prentice Hall, 1993)
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In the above example, we can find the most probable case; N = N, where the probability takes
maximum. This can be proved as follows.

. Z)"
f(N) = IHT

=N(nz+InZ,)—-InN!
=N(lnz+InZ.)-NInN+N

f'(N)=(Inz+InZ.)-InN=0
VnQ n,

U =—k;TIn(—=) = —k,T In(—)
N n

which agrees with the result derived from the grand canonical ensemble.

2. Approach from the grand canonical ensemble: simple harmonics
The partition function of the grand canonical ensemble for the simple harmonics is
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Note that each simple harmonics is localized around the origin (so-called crystal-type symmetry,
like a position of atoms in a crystal), unlike free particles (identical particles). So we do not have

to put the factor 1/ N!.

Here we neglect the zero-point energy. For fho <<1
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The chemical potential:
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In the limit of (N) — oo

u=k,TIn(fho).
which is the same as that derived for the canonical ensemble.

olnZ.,
ON
= kBTiNln(,b’ha))
ON

= k,TIn(ho)

He =—kgT



((Note)) Is there any probable value of N = N ?
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From this, the value of N cannot be determined. Nevertheless, we have the chemical potential
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which agrees with the result derived from the grand canonical ensemble.
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