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We now discuss the occupation number representation for the grand canonical 

ensemble. This representation is very useful in quantum statistics. 

 

1. Occupation number representation 

With εr the energy in the single-particle state r , the total energy E of the system is 
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Fig. The number of states vs one-particle energy. 

 

The number of particles N  in the system is given by 
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We note that 
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Then the partition for the grand canonical ensemble 
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The factor ..., 210  nnnN  is required for the condition of the fixed N such that 
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In order to simplify this expression, we just discuss the mathematics using the two 

problems. These problems are discussed in Widom’s textbook on statistical mechanics. 

 

B. Widom, Statistical Mechanics, A Concise Introduction for Chemists (Cambridge, 

2002). 
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((Problem-1)) 

Compare the two double sums 
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where in S1 the summations over m and n are independent while in S2 they are not: in each 

term of the double sum S2 the sum of m and n is required to be 6. Show that 
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((Solution)) 
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Note that S1 can be written out as the product 
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which is then expanded, it is seen that all the terms  
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of S2 appear among the terms in that expansion, as a small subset of them. 

 

((Problem-2)) 

Show by explicitly evaluating 
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that it is identical to the 
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((Solution)) 

S3 can be evaluated as follows. 
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which is equal to S1. 

________________________________________________________________________ 

It can follow from the above examples that 
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where we use the mathematical equivalence 
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For the boson system (ni = 0, 1, 2, …,  ) 
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For the fermion system ni = 0, 1) 
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2. Relation between the Grand canonical ensemble and canonical ensemble 

The grand canonical ensemble can be expressed in terms of the canonical ensemble 
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where CNZ  is the N-particle partition function of canonical ensemble, and is defined by 
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and 

 


ez    (the fugacity). 

 

Thus the partition function of the grand canonical ensemble is expressed by 
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We note that 
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3. Derivation of the Fermi-Dirac distribution function 

Using the relation, 
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we get 
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4. Derivation of the Bose-Einstein distribution function 

Using the relation, 
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we get 
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5. Example 

We discuss the relation between the partition function of the grand canonical ensemble 

and that of the canonical ensemble using a simple example. 

 

 
 

For example, we use N = 6. We need to calculate the following partition function. 
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where 1C
Z  is the on-particle partition function of the canonical ensemble 
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The partition function of the grand canonical ensemble: 
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((Mathematica)) 
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