GCE: Occupation number representation Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton

 (Date: September 24, 2018)We now discuss the occupation number representation for the grand canonical ensemble. This representation is very useful in quantum statistics.

1. Occupation number representation

With ε_{r} the energy in the single-particle state $|r\rangle$, the total energy E of the system is

$$
\begin{equation*}
E=n_{0} \varepsilon_{0}+n_{1} \varepsilon_{1}+n_{2} \varepsilon_{2}+\ldots+n_{i} \varepsilon_{i}+\ldots \tag{1}
\end{equation*}
$$

Fig. The number of states vs one-particle energy.

The number of particles N in the system is given by

$$
\begin{equation*}
N=n_{0}+n_{1}+n_{2}+\ldots+n_{i}+\ldots \tag{2}
\end{equation*}
$$

We note that

$$
\begin{aligned}
\exp [\beta(\mu N-E)] & =\exp \left[\beta \mu\left(n_{0}+n_{1}+\ldots\right)-\beta\left(\varepsilon_{0} n_{0}+\varepsilon_{1} n_{1}+\ldots\right)\right] \\
& =\exp \left[\beta\left(\mu-\varepsilon_{0}\right) n_{0}\right] \exp \left[\beta\left(\mu-\varepsilon_{1}\right) n_{1}\right] \ldots \\
& =\prod_{i=0}^{\infty} \exp \left[\beta\left(\mu-\varepsilon_{i}\right) n_{i}\right]
\end{aligned}
$$

Then the partition for the grand canonical ensemble

$$
Z_{G}=\sum_{N=0}^{\infty}\left(\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \ldots \prod_{i=0}^{\infty} \exp \left[\beta\left(\mu-\varepsilon_{i}\right) n_{i}\right] \delta_{N, n_{0}+n_{1}+n_{2}+\ldots}\right)
$$

The factor $\delta_{N, n_{0}+n_{1}+n_{2}+\ldots}$ is required for the condition of the fixed N such that

$$
N=n_{0}+n_{1}+n_{2}+\ldots+n_{i}+\ldots
$$

In order to simplify this expression, we just discuss the mathematics using the two problems. These problems are discussed in Widom's textbook on statistical mechanics.

B. Widom, Statistical Mechanics, A Concise Introduction for Chemists (Cambridge, 2002).

((Problem-1))

Compare the two double sums

$$
S_{1}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n}, \quad S_{2}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n} \delta_{m+n, 6}
$$

where in S_{1} the summations over m and n are independent while in S_{2} they are not: in each term of the double sum S_{2} the sum of m and n is required to be 6 . Show that

$$
S_{1}=S_{2}
$$

((Solution))

$$
\begin{aligned}
S_{1} & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n}=\frac{1}{1-x} \cdot \frac{1}{1-y} \\
S_{2} & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n} \delta_{m+n, 6} \\
& =y^{6}+x y^{5}+x^{2} y^{4}+x^{3} y^{3}+x^{4} y^{2}+x^{5} y^{1}+x^{6} \\
& =\frac{y^{7}-x^{7}}{y-x}
\end{aligned}
$$

Note that S_{1} can be written out as the product

$$
S_{1}=\frac{1}{1-x} \cdot \frac{1}{1-y}=\left(1+x+x^{2}+x^{3}+\ldots\right)\left(1+y+y^{2}+y^{3}+\ldots\right),
$$

which is then expanded, it is seen that all the terms

$$
y^{6}+x y^{5}+x^{2} y^{4}+x^{3} y^{3}+x^{4} y^{2}+x^{5} y^{1}+x^{6}
$$

of S_{2} appear among the terms in that expansion, as a small subset of them.

((Problem-2))

Show by explicitly evaluating

$$
S_{3}=\sum_{N=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n} \delta_{m+n, N}
$$

that it is identical to the

$$
S_{1}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} x^{m} y^{n}=\frac{1}{1-x} \cdot \frac{1}{1-y}
$$

((Solution))

S_{3} can be evaluated as follows.

$$
\begin{aligned}
S_{3} & =\sum_{N=0}^{\infty}\left(\frac{y^{N}-x^{N}}{y-x}\right) \\
& =\frac{1}{y-x} \sum_{N=0}^{\infty}\left(y^{N}-x^{N}\right) \\
& =\frac{1}{y-x}\left[\frac{1}{1-y}-\frac{1}{1-x}\right] \\
& =\frac{1}{(1-y)(1-x)}
\end{aligned}
$$

which is equal to S_{1}.
It can follow from the above examples that

$$
\begin{aligned}
Z_{G} & =\sum_{N=0}^{\infty}\left(\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \cdots \prod_{i=0}^{\infty} \exp \left[\beta\left(\mu-\varepsilon_{i}\right) n_{i}\right] \delta\left[N-\left(n_{0}+n_{1}+n_{2}+\ldots\right)\right]\right) \\
& =\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \cdots \prod_{i=0}^{\infty} \exp \left[\beta\left(\mu-\varepsilon_{i}\right) n_{i}\right] \\
& =\prod_{i=0}^{\infty} \sum_{n_{i}=0}^{\infty} \exp \left[\beta\left(\mu-\varepsilon_{i}\right) n_{i}\right]
\end{aligned}
$$

where we use the mathematical equivalence

$$
\sum_{N=0}^{\infty}\left(\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \ldots \delta\left[N-\left(n_{0}+n_{1}+n_{2}+\ldots\right)\right]\right)=\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \ldots
$$

For the boson system $\left(n_{i}=0,1,2, \ldots, \infty\right)$

$$
Z_{G}=\prod_{i=0}^{\infty} \frac{1}{1-e^{\beta\left(\mu-\varepsilon_{i}\right)}}
$$

For the fermion system $n_{\mathrm{i}}=0,1$)

$$
Z_{G}=\prod_{i=0}^{\infty}\left[1+e^{\beta\left(\mu-\varepsilon_{i}\right)}\right]
$$

2. Relation between the Grand canonical ensemble and canonical ensemble The grand canonical ensemble can be expressed in terms of the canonical ensemble

$$
Z_{G}=\sum_{N=0}^{\infty} z^{N} Z_{C N}=\sum_{N=0}^{\infty} e^{\beta \mu N} Z_{C N}
$$

where $Z_{C N}$ is the N-particle partition function of canonical ensemble, and is defined by

$$
Z_{C N}=\sum_{i[N]} \exp \left[-\beta E_{i}(N)\right]
$$

and

$$
z=e^{\beta \mu} \quad \text { (the fugacity). }
$$

Thus the partition function of the grand canonical ensemble is expressed by

$$
\begin{aligned}
Z_{G} & =\sum_{N=0}^{\infty} \sum_{i[N]} \exp \left[\beta\left(\mu N-E_{i}(N)\right]\right. \\
& =\sum_{N=0}^{\infty} \sum_{i[N]} z^{N} \exp \left[-\beta E_{i}(N)\right] \\
& =\sum_{N=0}^{\infty} z^{N} Z_{C N}
\end{aligned}
$$

We note that

$$
\begin{aligned}
\frac{\partial}{\partial z} Z_{G} & =\frac{\partial}{\partial z} \sum_{N=0}^{\infty} z^{N} Z_{C N} \\
& =\sum_{N=0}^{\infty} N z^{N-1} Z_{C N} \\
& =\frac{1}{z} \sum_{N=0}^{\infty} N z^{N} Z_{C N}
\end{aligned}
$$

or

$$
\langle N\rangle_{G}=\frac{1}{Z_{G}} \sum_{N=0}^{\infty} N z^{N} Z_{C N}=\frac{z}{Z_{G}} \frac{\partial}{\partial z} Z_{G}=z \frac{\partial}{\partial z} \ln Z_{G}
$$

3. Derivation of the Fermi-Dirac distribution function

Using the relation,

$$
\ln Z_{G}=\sum_{i} \ln \left[1+e^{\beta\left(\mu-\varepsilon_{i}\right)}\right]=\sum_{i} \ln \left[\left(+z e^{-\beta \varepsilon_{i}}\right)\right.
$$

we get

$$
\begin{aligned}
\langle N\rangle & =z \frac{\partial}{\partial z} \ln Z_{G} \\
& =\sum_{i} \frac{z e^{-\beta \varepsilon_{i}}}{1+z e^{-\beta \varepsilon_{i}}} \\
& =\sum_{i} \frac{1}{\frac{1}{z} e^{\beta \varepsilon_{i}}+1} \\
& =\sum_{i}\left\langle n_{i}\right\rangle
\end{aligned}
$$

or

$$
\left\langle n_{i}\right\rangle=\frac{1}{\frac{1}{z} e^{\beta \varepsilon_{i}}+1}=\frac{1}{e^{\beta\left(\varepsilon_{i}-\mu\right)}+1} \quad \text { Fermi-Dirac distribution function. }
$$

4. Derivation of the Bose-Einstein distribution function

Using the relation,

$$
\ln Z_{G}=-\sum_{i} \ln \left[1-e^{\beta\left(\mu-\varepsilon_{i}\right)}\right]=-\sum_{i} \ln \left(1-z e^{-\beta \varepsilon_{i}}\right)
$$

we get

$$
\begin{aligned}
\langle N\rangle & =z \frac{\partial}{\partial z} \ln Z_{G} \\
& =-\sum_{i} \frac{(-z) e^{-\beta \varepsilon_{i}}}{1-z e^{-\beta \varepsilon_{i}}} \\
& =\sum_{i} \frac{1}{\frac{1}{z} e^{\beta \varepsilon_{i}}-1} \\
& =\sum_{i}\left\langle n_{i}\right\rangle
\end{aligned}
$$

$$
\left\langle n_{i}\right\rangle=\frac{1}{\frac{1}{z} e^{\beta \varepsilon_{i}}-1}=\frac{1}{e^{\beta\left(\varepsilon_{i}-\mu\right)}-1}
$$

Bose-Einstein distribution function
5. Example

We discuss the relation between the partition function of the grand canonical ensemble and that of the canonical ensemble using a simple example.

$$
\left\{n_{4}, \varepsilon_{4}, g_{4}\right\}
$$

\qquad

$$
\left\{n_{2}, \varepsilon_{2}, g_{2}\right\}
$$

\qquad

$$
\left\{n_{1}, \varepsilon_{1}, g_{1}\right\}
$$

For example, we use $N=6$. We need to calculate the following partition function.

$$
\begin{aligned}
& Z_{G}(N)=\sum_{\{n 1, n 2, n 3, n 4\}} \frac{N!}{n_{1}!n_{2}!n_{3}!n_{4}!}\left(g_{i} z\right)^{n_{i}} e^{-\beta n_{i} \varepsilon_{i}} \delta\left(n_{1}+n_{2}+n_{3}+n_{4}, N\right) \\
& Z_{G}(N)=[Z(1)]^{N}=z^{N}\left(Z_{C 1}\right)^{N}
\end{aligned}
$$

where

$$
\begin{aligned}
Z_{G}(1) & =g_{1} z e^{-\beta \varepsilon_{1}}+g_{2} z e^{-\beta \varepsilon_{2}}+g_{3} z e^{-\beta \varepsilon_{3}}+g_{4} z e^{-\beta \varepsilon_{4}} \\
& =z\left(g_{1} e^{-\beta \varepsilon_{1}}+g_{2} e^{-\beta \varepsilon_{2}}+g_{3} e^{-\beta \varepsilon_{3}}+g_{4} e^{-\beta \varepsilon_{4}}\right) \\
& =z Z_{C 1}
\end{aligned}
$$

where $Z_{C 1}$ is the on-particle partition function of the canonical ensemble

$$
Z_{C 1}=g_{1} e^{-\beta \varepsilon_{1}}+g_{2} e^{-\beta \varepsilon_{2}}+g_{3} e^{-\beta \varepsilon_{3}}+g_{4} e^{-\beta \varepsilon_{4}}
$$

The partition function of the grand canonical ensemble:

$$
\begin{aligned}
Z_{G} & =1+Z_{G}(1)+Z_{G}(2)+\ldots . \\
& =1+z Z_{C 1}+z^{2}\left(Z_{C 1}\right)^{2}+\ldots \\
& =\frac{1}{1-z Z_{C 1}}
\end{aligned}
$$

((Mathematica))

Clear["Global`*"];
J2[N1_] :=
$\operatorname{Sum}\left[\frac{N 1!}{\mathrm{n} 1!\mathrm{n} 2!\mathrm{n} 3!\mathrm{n} 4!}(\mathrm{g} 1 \mathrm{z})^{\mathrm{n} 1} \operatorname{Exp}[-\beta(\mathrm{n} 1 E 1)](\mathrm{g} 2 \mathrm{z})^{\mathrm{n} 2}\right.$
$\operatorname{Exp}[-\beta(n 2 E 2)](g 3 z)^{n 3} \operatorname{Exp}[-\beta(n 3 E 3)](g 4 z){ }^{n 4}$
$\operatorname{Exp}[-\beta$ (n4 E4)] KroneckerDelta[n1 + n2 + n3 + n4-N1],
$\{n 1,0, N 1\},\{n 2,0, N 1\},\{n 3,0, N 1\}$,
\{n4, 0, N1\}] // Simplify;
J2[6]
$e^{-6(E 1+E 2+E 3+E 4)} \beta$

$$
\begin{aligned}
& \left(e^{(\mathrm{E} 2+\mathrm{E} 3+\mathrm{E} 4) \beta} \mathrm{g} 1+e^{(\mathrm{E} 1+\mathrm{E} 3+\mathrm{E} 4) \beta} \mathrm{g} 2+e^{(\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 4) \beta} \mathrm{g} 3+\right. \\
& \left.\quad e^{(\mathrm{E} 1+\mathrm{E} 2+\mathrm{E} 3) \beta} \mathrm{g} 4\right)^{6} \mathrm{z}^{6}
\end{aligned}
$$

REFERENCES

C. Kittel, Elementary Statistical Physics (John Wiley \& Sons, 1958).
B. Widom, Statistical Mechanics, A Concise Introduction for Chemists (Cambridge, 2002).

