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We now discuss the occupation number representation for the grand canonical
ensemble. This representation is very useful in quantum statistics.

1. Occupation number representation

With ¢, the energy in the single-particle state |r> , the total energy E of the system is

E=ny,+ng +ne, +...+ne+... (1)
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Fig. The number of states vs one-particle energy.
The number of particles N in the system is given by

N=n,+n+n,+..+n +.. 2)
We note that

exp[B(uN — E)]=exp[ Bu(n, +n, +...) = B(ggn, + & +..)]
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Then the partition for the grand canonical ensemble
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The factor &

N,ng+n;+ny+...

is required for the condition of the fixed N such that
N=n,+n +n,+..+n +..

In order to simplify this expression, we just discuss the mathematics using the two
problems. These problems are discussed in Widom’s textbook on statistical mechanics.

B. Widom, Statistical Mechanics, A Concise Introduction for Chemists (Cambridge,
2002).

((Problem-1))
Compare the two double sums

S, = szmy” 5 S, = zzx’"y”é‘mmﬁ
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where in S1 the summations over m and n are independent while in S> they are not: in each
term of the double sum S> the sum of m and # is required to be 6. Show that
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((Solution))
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Note that S1 can be written out as the product

S, = =+ x+ 2+ X+ )A+y+ Y Y+,
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which is then expanded, it is seen that all the terms
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of S2 appear among the terms in that expansion, as a small subset of them.

((Problem-2))
Show by explicitly evaluating

((Solution))
S3 can be evaluated as follows.
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which is equal to Si.

It can follow from the above examples that

Zg= i(i i-ﬁeXp[ﬁ(ﬂ—a,-)n,.] S[N —(n, +n, +n, +...)])
= i i...ﬁexp[ﬂ(,u—el.)ni]
1T explAlu—e)n,]

n;=0

I
(=]

i

where we use the mathematical equivalence

i(i i N—(ny+n +n,+.. )])=i i

For the boson system (n; =0, 1, 2, ..., )

For the fermion system n; =0, 1)
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2. Relation between the Grand canonical ensemble and canonical ensemble
The grand canonical ensemble can be expressed in terms of the canonical ensemble
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where Z ., is the N-particle partition function of canonical ensemble, and is defined by

Zey = Y exp[—BE,(N)]
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and
(the fugacity).

Thus the partition function of the grand canonical ensemble is expressed by

Zo =3 S explA(uN - E,(N)]
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We note that
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3. Derivation of the Fermi-Dirac distribution function
Using the relation,
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we get
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4. Derivation of the Bose-Einstein distribution function

Using the relation,
InZ; ==Y In[l-&’“*’1==>"In(1-ze ")
we get
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5. Example
We discuss the relation between the partition function of the grand canonical ensemble
and that of the canonical ensemble using a simple example.
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For example, we use N = 6. We need to calculate the following partition function.
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where
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where Z_, is the on-particle partition function of the canonical ensemble
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The partition function of the grand canonical ensemble:

Zo=1+Z.D)+Z,(2)+.....

=1+zZ +2°(Zp) +....

((Mathematica))
Clear["Global *"];

J2[N1_] :=

N1'!
Sum[ (g12z) " Exp[-B (n1E1)] (g2z)"™
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Exp[-B (n4 E4) ] KroneckerDelta[nl+n2+n3+n4-N1],
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{n4, 0, Nl}] // Simplify;
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