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1. Classical statistics for ideal gas

Fluctuation
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2. Fermi-Dirac statistics
Fermi-Dirac distribution function
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Fluctuation:
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which is always lower than 1/4. The fluctuation for fermion is rather small. This implies that
there is a repulsion force between fermions.
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3. Bose-Einstein

It is remarkable feature of a Boson gas that the relative fluctuations are of the order of unity for
large <n1>
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4. Fluctuation of quantum ideal gas (general)

We consider an assembly of n, particles in the k-th quantum state. Since this set of particles

is statistically independent of the remaining particles in the quantum ideal gas.
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We note that
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5. General formulation (Robertson)
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The canonical and grand canonical energy variance can be related as follows.
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The terms in this result are clear. The first is the energy variance attributable to heat exchange
with the surroundings, but no matter flow, and the second is the additional contribution resulting
from the exchange of particles between the system and its surroundings. This formula is also
given in the book of Kittel (Exercise 25.6).
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APPENDIX
Huang Introduction to Statistical Mechanics
For an ideal quantum gas, show that

<nknp>—<nk><np>=—%%<np> (k#p)

Since <np> does not depend on &, , this gives

<nknp>:<nk><n[,> (k = p)

((Solution))
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We know that <nk> __ does not depend on ¢, . Thus the above is zero, or
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<nknp>:<nk><np> (k = p)



