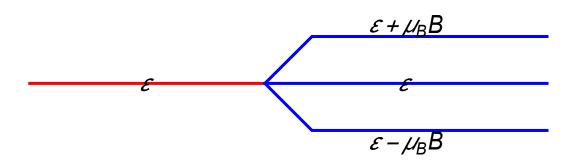
Adsorption of O₂ in a magnetic field Masatsugu Sei Suzuki (Date: November 09, 2019)

Suppose that at most one O_2 can be bound to a heme group, and that when $z(O_2) = 10^{-5}$ we have 90% of the hemes occupied by O_2 . Consider O_2 as having a spin of 1 and a magnetic moment of 1 μ_B . How strong magnetic field is needed to change the adsorption by 1% at T = 300 K?



((Solution))

$$z(O_2) = 10^{-5}$$

There are four states:

- 1. State-1 Number of particle N = 1, energy E = 0.
- 2. State 2 $N=1, E=\varepsilon-\mu_B B$
- 3. State 3 $N=1, E=\varepsilon$
- 4. State 4 $N = 1, E = \varepsilon + \mu_B B$

The Gibbs sum:

$$Z_G = 1 + z(O_2)e^{-\beta\varepsilon} (e^{\beta\mu_B B} + 1 + e^{-\beta\mu_B B})$$

= 1 + z(O₂)e^{-\beta\varepsilon} K(B)

The probability:

$$P_1 = \frac{1}{1 + z(\mathcal{O}_2)e^{-\beta\varepsilon}K(B)}$$

$$P_2 = \frac{z(\mathcal{O}_2)e^{-\beta(\varepsilon - \mu_B B)}}{1 + z(\mathcal{O}_2)e^{-\beta\varepsilon}K(B)}$$

$$P_3 = \frac{z(O_2)e^{-\beta\varepsilon}}{1 + z(O_2)e^{-\beta\varepsilon}K(B)}$$

$$P_4 = \frac{z(\mathcal{O}_2)e^{-\beta(\varepsilon + \mu_B B)}}{1 + z(\mathcal{O}_2)e^{-\beta\varepsilon}K(B)}$$

Note that

$$P_{234} = P_2 + P_3 + P_4 = \frac{z(O_2)e^{-\beta\varepsilon}K(B)}{1 + z(O_2)e^{-\beta\varepsilon}K(B)}$$

with

$$K(B) = 1 + e^{-\beta \mu_B B} + e^{\beta \mu_B B}$$

When B = 0, we have

$$\frac{z(O_2)e^{-\beta\varepsilon}K(B=0)}{1+z(O_2)e^{-\beta\varepsilon}K(B=0)} = 0.90$$

or

$$\frac{3z(O_2)e^{-\beta\varepsilon}}{1 + 3z(O_2)e^{-\beta\varepsilon}} = 0.90$$

where K(B=0)=3

$$z(\mathcal{O}_2)e^{-\beta\varepsilon}=3$$

Thus we have

$$P_{234} = \frac{3K(B)}{1 + 3K(B)} = 0.91$$

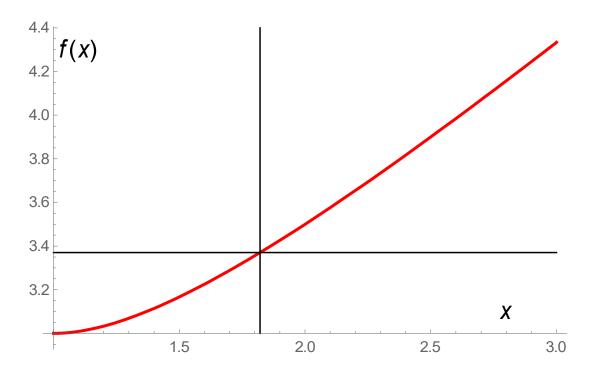
or

$$K(B) = 3.37$$

We note that

$$f(x) = 1 + x + \frac{1}{x}$$

with $x = e^{\beta \mu_B B}$.



We solve

$$f(x) = 3.37$$

leading to x = 1.821.

$$x = 1.821 = e^{\beta \mu_B B}$$

or

$$B = \frac{k_B T}{\mu_B} = 267.7 \text{ T}$$