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Using the grand potential for both the fermions and bosons, we the thermodynamic properties are 

derived here. The energy dispersion of particles is assumed to be quadratic with momentum like 

free particles such as electron. The expression of the grand potential for fermion is very similar to 

that of bosons except for the distribution function. In spite of such a fact, the discussion will be 

done below separately, partly because of avoiding possible confusion. The book of Landau and 

Lifshitz, Statistical Physics is very useful for our understanding the concepts. 

 

1. Grand potential for fermions 

The partition function: 
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in  (Fermi-Dirac distribution function) 

 

The entropy 



 

,V

G

T
S 











 , , 

 

The number: 

 

VT

GN
,















 

 

The pressure 

 

,T

G

V
P 











  

 

Then the grand potential can be calculated as follows. 
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We use the following relation 
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Thus we have 
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The integration by parts gives 
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The pressure P is 
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We note that 
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, since G  is proportional to V. So we have the relation 
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PVG  . (1) 

 

The number N is obtained as 
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or directly, we get N from the definition as 
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We also calculate the energy U as 
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So U is related to the grand potential as 
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From Eqs.(1) and (2), we get the relation 
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3. Grand potential for bosons 

The partition function: 
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in  (Bose-Einstein distribution function) 
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We now calculate the grand potential 
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where g = 2 for spin 1/2 particle. We use the following dispersion relation 
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So we have 
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The integration by parts gives 
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The pressure P is 
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, since G  is proportional to V. So we have the relation 
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The number N is 

 






















































0

)(32

2/3

0

)(32

2/3

0

)(

2/3

32

2/3

0

)(

2/3

32

2/3

,

12

12

3

23

2

1

1

23

2

1

1

23

2





























e

dgVm

e

dgVm

d
e

gVm

d
e

gVm

N
VT

G

ℏ

ℏ

ℏ

ℏ

 

 

or simply, we get N from  
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We also calculate the energy E as 
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So U is related to the grand potential as 
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We get the relation 
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3. Scaling relation for fermion and boson 

This result is exact, and so must hold valid in the limiting case of a Boltzmann gas also. In fact, 

on substituting the Boltzmann value TNkE B
2

3
 , we obtain the Boyle law. 

We consider the pressure P. 
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for the positive sign for fermion and the minus sign for boson. From Eq.(1), substituting x , 

we obtain 
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where f is a function of a single variable. The entropy S is obtained as 
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In an adiabatic process (S = constant), 
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 remains constant. Since 
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we have 
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4. Approximation for fermion and boson 
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We now expand the integrand as a power of z, 
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Using the Laplace transformation for the term with n = 3/2, we have 
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Thus we have the approximation for U and N as follows. 
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APPENDIX-I 

Grand potential 
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APPENDIX-II Calculation of G  (fermion) using the Sommerfeld expansion 

Using the formula for fermions, 
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we get the ratio 
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where we use the Sommerfeld expansion 
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The entropy S is obtained by 
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