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Using the grand potential for both the fermions and bosons, we the thermodynamic properties are
derived here. The energy dispersion of particles is assumed to be quadratic with momentum like
free particles such as electron. The expression of the grand potential for fermion is very similar to
that of bosons except for the distribution function. In spite of such a fact, the discussion will be
done below separately, partly because of avoiding possible confusion. The book of Landau and
Lifshitz, Statistical Physics is very useful for our understanding the concepts.

1. Grand potential for fermions
The partition function:
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The pressure
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Then the grand potential can be calculated as follows.
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We use the following relation
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The integration by parts gives
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The pressure P is
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We note that (ag;c j = % , since @ is proportional to V. So we have the relation
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The number N is obtained as
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or directly, we get N from the definition as
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We also calculate the energy U as
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So U is related to the grand potential as
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3. Grand potential for bosons
The partition function:
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We now calculate the grand potential
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where g = 2 for spin 1/2 particle. We use the following dispersion relation
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The integration by parts gives
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The pressure P is
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or simply, we get N from

N=En)

1
- (27[)3 g Pl _q
gV (2m 2% Jede
T4\ n? Oeﬂ(‘g””—l

_ghm*? % Jeds
NEY =5 0 P

We also calculate the energy E as
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So U is related to the grand potential as
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We get the relation
PV = gU .
3

3. Scaling relation for fermion and boson
This result is exact, and so must hold valid in the limiting case of a Boltzmann gas also. In fact,

on substituting the Boltzmann value E = %NkBT , we obtain the Boyle law.

We consider the pressure P.
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for the positive sign for fermion and the minus sign for boson. From Eq.(1), substituting fe = x,

we obtain
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where fis a function of a single variable. The entropy S is obtained as
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where g.(x) = —% f(x)+ xf'(x). The number N is obtained as

oP 1, u U U
N=- G — _VT5/2_ Fnd _VT3/2 Fnd VT3/2 7
( j S AT BN

where
gy(x)=—f"(x)

Then we have

S gt
N P T)
where
_ gs(x)
) @

In an adiabatic process (S = constant), % remains constant. Since
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4. Approximation for fermion and boson
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We now expand the integrand as a power of z,
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Using the Laplace transformation for the term with n = 3/2, we have
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Thus we have the approximation for U and N as follows.
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APPENDIX-I
Grand potential
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APPENDIX-II Calculation of @ (fermion) using the Sommerfeld expansion

Using the formula for fermions,
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where we use the Sommerfeld expansion
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The entropy S is obtained by
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