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The distribution function for the fermion and boson systems is derived using the variational 

method. 

 

1. Distribution function for fermions 

The fermion system obeys the Pauli exclusion principle. For each state, there is no more than 

one particle. In order to apply the Lagrange multiplier method in the statistics in the fermion system, 

it is useful to introduce the concept of the density of states. We consider the particles having energy 

between j  and j   . The number of particles is given by 

 

( )j jN D     

 

where   is constant and is chosen appropriately. Suppose that there are jM  particles in this 

energy range. So the total energy is j jM  . 

 

 
 

For the total number jN , 
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where jx1  means the state with the zero atom (1) and the state with the one atom ( jx ). The 

coefficient of   jM

jx  in the expansion jN

jx )1(   is given by 
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Fig. There are jN  atoms. Each atom is in either empty state or one-atom state with the energy 

between j  and j   . No other energy states are here. The occupied state with the 

energy between j  and j    is denoted by red solid circles. The empty state is denoted 



by blue circles. The number of atoms denoted by red solid circles is jM . The occupation 

probability is 
j

j

j
N

M
n  . The number of ways in the case when Mj atoms (with the same 

energy j ) among Nj atoms. So the energy of this subsystem is jjM   

 

 
 

Fig. jM particles are occupied in the energy level j  (one-particle energy). The total number 

of states in this energy level number is jN . The total energy is j jM  .  

 

There are jM  atoms in the energy level with jjM  . In the Fermi case there can be no more than 

one particle in each quantum state (Pauli exclusion principle), but the numbers jM  are not small, 

and are in general of the same order of magnitude as the numbers jN . The number of possible 

ways of distributing jM  identical particles among jN  states with not more than one particle in 

each is just the number of ways of selecting jM  of the jN  states, i.e., the number of combinations 

of jN  things jM  at a time. Thus 
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Taking the logarithm of this expression and using the Stirling’s law, 
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Using the mean occupation numbers of the quantum states, 
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the entropy S can be rewritten as 
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So we have the following expression for the entropy of a Fermi gas not in equilibrium. In thermal 

equilibrium, the most probable value of jn  is given by maximizing in Wln  under the condition 

that E and N are kept constant 
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Then we have 
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or 
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where  and  are indeterminate multipliers. Then the equilibrium distribution is obtained by the 

formula 
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which is the Fermi-Dirac distribution function. We choose 
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Then we have 
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((Determination of   and  )) 

We start with the expression of the entropy 
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Thus we have 
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We note that 
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Using the thermodynamic relation, 
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we have 
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((Note)) 

I learned this method in the class of Semiconductor Physics, when I was a sophomore student. 

In the first day, my teacher (Prof. Umejiro Yoshida) explained the Schrödinger equation for free 

electrons and electron states in the quantum box. In the second day of the class, he explained the 

Fermi-Dirac distribution function using above method. I did not understand the significant point 

of this method since I was not familiar with the Pauli exclusion principle, the difference between 

boson and fermion, the grand canonical ensemble, and so on. After 40 years, I realize that this 



method is one of the best ways to teach the physics of semiconductor for beginners who are not 

familiar with the principle of statistical thermodynamics. 

 

2. Distribution function for bosons 

For bosons, there is no limitation on the number of atoms occupied on each state. We consider 

a state with energy j . In this state, there are more than one particles denoted by s (s =1, 2, 3,…, 

jN ). The s-th particle is in the sm  state with the energy s jm  . The total energy is 

 

1 2( ...)j j jM m m     

 

For the total number jN , 
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In the expansion 12
)1(....)1(  jjj xxx ,   njx  is the state with n atoms, where n is an 

integer between 0 and infinity. The coefficient of   jM

jx  in the expansion is 
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We take the logarithm of this expression and neglecting unity in comparison with the very large 

numbers jj MN   and jM . Using the Stirling’s approximation, we have 
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Using the mean occupation numbers of the quantum states, 

 

j

j

j
N

M
n  . 

 

the entropy S can be rewritten as 
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So we have the following expression for the entropy of a Bose gas not in equilibrium. In thermal 

equilibrium, the most probable value of jn  is given by maximizing in Wln  under the condition 

that E and N are kept constant 
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Note that Mj is the number of bosons with the energy j .  

 

((Note)) Derivation of the formula: 
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We consider an example. Suppose that  that 2  with energy jj  ℏ22  , 5  with energy 

jj  ℏ55  , 0  with energy jj  ℏ00  , 3  with energy jj  ℏ33  , and 1  with energy 

jj  ℏ11   

 
 

which is equivalent to 

 

 
 



where the barrier is denoted by black mark (4). It follows that there are 2+5+0+3+1 = 11 bosons 

(red mark) with the energy jj  ℏ ; 
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Then we have 
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where  and  are indeterminate multipliers. Thus the equilibrium distribution is given by the 

formula 
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which is the Bose-Einstein distribution function, where 
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((Determination of   and  )) 

Entropy 
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Thus we have 
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We note that 

 

( )

( )

( )

[ ]
1

( )

[ ]

( ) ( )

j

j

B

B j j

j

B

B j j j

j

B B

B

S
k N U

U U U

e
k N

U Ue

k N U
U U

k N n
U U

k N U k N U
U U U U

k

 

 

 


 


 


 


   




 

 

  
  

  

 
 

 

 
  

 
 

 
 

   
    

   






 

 



( )

( )

( )

[ ]
1

( )

[ ]

( ) ( )

j

j

B

B j j

j

B

B j j j

j

B B

B

S
k N U

N N N

e
k N

N Ne

k N U
N U

k N n
N N

k N U k N U
N U N N

k

 

 

 


 


 


 


   




 

 

  
  

  

 
 

 

 
  

 
 

 
 

   
    

   






 

 

Using the thermodynamic relation, 
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3. Grand canonical system (Robertson) 

In the grand canonical formalism, the entropy is given as usual as 
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the final condition corresponding to an indeterminacy in the number of particles, and generalizable 

to more than one species of particle. iN  represents the number of particles in the system when its 

state is designated by the subscript i. When S is maximized, the spi '  are found to be 
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where GZ  is the partition function of the grand canonical ensemble. The entropy S is obtained as 
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